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PFAS Treatment Evolution

* In 2012, best available technologies included
adsorbents and membranes
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Adsorptive PFAS Treatment - Groundwater

* Groundwater treatment comparison between GAC and IX

Rapid breakthrough of short-chain PFAS
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Adsorptive PFAS Treatment — Impact of Organic Matter

Pretreatment — TOC removal
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Adsorptive PFAS Treatment — Novel Adsorbents
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PFAS Treatment — High-Pressure Membranes

Lower Energy -« > Higher Energy
. . Loose NF Tight NF Low-pressure RO Seawater RO
Closed-Circuit Desalination (CCD) [ e g = P — o
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- | [ — 1
Feed 204
Internal Recycle 704
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I Retentate |
* Designed to operate at high recovery (minimize N
retentate) N

e Semi-batch operation | L

* Feed water brought into system at permeation rate
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* Once achieved desired recovery — retentate is SIOSESITL SEDcEEFFL £I0cBiFTe fEfsBEEte
discharged and process starts over Rejection data for 97% recovery experiment — synthetic groundwater; Safulko et al., 2023



V)]
Q
-
(O
S
O
-
Q
Q
S
D)
V)]
V)]
Q
S
an
|
-
20
L
|
)
-
Q
-
4
qe)
Q
S
Tlll
V)
<C
L
an

ing CCD

Patterson AFB us

* Groundwater treatment at Wright-

iltration

Nanof

Reverse Osmosis

0.985

0.965

Rejection (-)
0
<
]
o

0.925

0.905

2| SXHO¥d4dd

f=
i
i

60

50

0.995

o
=

o
™

o
N

10

(7/6u) uonesnuasuo) sjeswlad

0.99

Rejection (-)
o]
[0}
]
o

i

o

e

:

i
o

B

n.d.EEE nd

12 =

o
-

0

©

<

(7/6u) uonesnuadsuo) syeswIsd

0

Feed (Groundwater)

1000

(7/6u) 0LBo7

100

10

VSXH4
vsad
VSadA

S142z8
S1429
S04d
SdH4d
SXH4d
Sed4d
sSg4d
Sid4d
VN4d
vO4d
vdH4d
VXH4d
vod4dd
vd4d

VSXH4
vsdad
vSadd

SXHO134d

S1428
S142Z:9
S04d
SdH4d
SXH4d
Soddd
sSg4d
Sid4d
VN4d
vO4d
vdH4d
VXH4d
vad4dd
vg4d

Denn, Cassidy Powell Katie Welch and Sage Clay (GSI)

1Ison

Adria Lau and Nicole Masters (Mines), All

Acknowledgement to Mines and GSlI field team



PFAS Treatment — Destructive Technologies

* Various destructive technologies developed and evaluated for PFAS
treatment

* Generally, energy intensive: 10* — 10° kWh/kg-PFAS?

10000000

Challenges (and opportunities):

* Certain destructive technologies challenged by
short-chain PFAAs (e.g., plasma, electrochemical)

 SCWO and HALT effective for a wide range of PFAS

and water matrices but operate under very
aggressive conditions

* Limited on treatment capacity due to cost and
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Destructive Technologies — HALT (Hydrothermal Alkaline Treatment)

e Liquid water amended with concentrated alkali at near-critical temperatures (350°C, 1 M
NaOH) promotes PFAS destruction and defluorination of PFAS
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 Destroys full suite of PFAS detected in AFFF stockpiles, groundwater, soil, waste

concentrates (e.g., foam fractionate), and PFAS-contaminated GAC adsorbents

« Technology being I‘

commercialized and &» 8
field demonstrated N~ Aquagga MIN‘ES

10




PFAS Treatment — Integration of Separation Processes with

Destruction

Concentrate management remains the main challenge impeding widespread adoption of NF and RO

Several completed or ongoing projects evaluating the use of membranes for PFAS concentration leading to
PFAS destruction

Field Demonstration at DoD Site
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These projects are in collaboration with companies that are commercializing emerging PFAS treatment
options including destructive technologies

11



Conclusions

* Adsorbents and membranes remain best available technologies for PFAS removal from
agueous matrices

* Low-cost and selective adsorbents needed. Pretreatment can significantly improve PFAS
adsorption

* Tight NF and RO provide high separation of variety of PFAS and can be used to concentrate
PFAS impacted water matrices and residuals

* Several promising destructive technologies being commercialized but cost remains a
challenge
Thank you!
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