

Palo Verde and the Water-Energy Nexus

Reducing Water Use and Cost at the Largest Nuclear Plant in the US

Water in the Desert

Why Water Resources?

- Traditional power generation requires water... A lot of water!
- Most power plants are located next to a large body of water.
- Palo Verde is located in the middle of the Sonoran Desert.
- Water Resources provides Palo
 Verde with a body of water.

Traditional Power Generation Water Usage

Source of Power	Low Gal/MWh	High Gal/MWh
Nuclear	400	800
Coal	500	1000
Natural Gas	100 400	
Solar	0	20

* Does not include water usage for manufacturing or mining operations

Balancing Priorities

- What else do we use water on and not think about?
 - 1 Almond > 1.1 gal
 - 1 lb Beef > 1847 gal
 - 1 pint of Beer > 20 gal
 - 1 Smartphone > 3400 gal
 - 1 Doz Eggs > 636 gal
 - 1 Car > 39,090 gal
 - 1 Ton Steel > 62,000 gal
 - 1 gal of gas > 13 gal

Water Resources Overview

Palo Verde Water Resources (WR) is a 90 MGD tertiary treatment plant that reclaims treated effluent from the cities of Phoenix, Scottsdale, Tempe, Mesa, Glendale and Tolleson.

Cooling Water Treatment

Softening of wastewater treatment plant (WWTP) effluent is a necessity. Softening is performed to:

- Minimize scaling potential
- Maximize water use

Scale Forming Constituents	Influent Quality (ppm)	Effluent Quality (ppm)	Cooling Tower Quality (ppm)
Calcium (as CaCO ₃)	200	100	2200
Magnesium (as CaCO ₃)	150	25	750
Silica	20	4	120
Phosphate	10	<1	10
Chloride	375	375	11000
TDS	1000	1000	28000

Water - How does it get here? 28.5 miles of gravity flow with 100-foot elevation drop, 8 miles pumped flow with 150foot elevation increase

Cooling Water Statistics

- 2022 Cooling Water Intensity – 748 gallons/MWh 2022 Cooling Water Use
 - 73,000 acre-feet
- 2022 Cooling Water Cycles of Concentration (COC)
 - 26.1 average cycles
 - 25,000-30,000 PPM TDS
 - -7,000-12,000 PPM CI

Cycles of Concentration

- Impacts of extended drought on Palo Verde?
 - Water contract requirements
 - Water contract risks
 - Treated Effluent changes over time and will it degrade further

WR Influent - Chlorides

85 Acre Reservoir TDS

Water Costs: Arizona vs The World

- Most thermal power plants outside of AZ have very low or no direct water purchase costs
- At Palo Verde, the cost of water has been increasing significantly since 2010 (10.5%/yr)
- In 2026, Palo Verde transitions to a tiered pricing structure
- In addition to the cost of water, chemical costs are also significant and have been drastically affected by the recent market
 ¹⁷ impacts

Water Costs: Arizona vs The World

How To Preserve Our Water Resources?

- Reduce how much water is needed
 - Operational Efficiency/Pre-treatment => More CoC
 - Temperatures => Dry cooling to augment cooling towers
- Alternate sources of water
 - PV is the largest reuser of water, what else can we do?
 - Local Brine Management partnerships
- Recycle as much water as possible
 - Treat cooling tower blowdown (~29,000 mg/l TDS) to recover 60%, 80%, 90+% of the water

Why is Palo Verde (and other Nuclear Units) Important?

NUCLEAR ENERGY'S EXTRAORDINARY VALUE

1. CLEAN

Nuclear energy is a critical part of the U.S. and world carbon-free generation portfolio.

2. RELIABLE

Nuclear power plants are the most efficient source of electricity, operating 24/7 at a 92% average capacity factor.

3. EFFICIENT

One uranium fuel pellet creates as much energy as one ton of coal or 17,000 cubic feet of natural gas.

Why is Palo Verde (and other Nuclear Units) Important?

- Palo Verde is currently the largest clean-air energy producer in the U.S.
 - 3 units each producing ~1400 MWe
 - After Vogtle 3&4 come on-line in Georgia they will earn that title
 - A lifetime of waste contained on an area the size of a football field

Why is Palo Verde (and other Nuclear Units) Important?

- Palo Verde provides ~50% of the carbon-free electricity used in Arizona
 - Palo Verde has 7 owners, with ~50% of our electricity staying in AZ
 - 3 California Owners ~27%
 - 1 New Mexico Owner ~7%
 - 1 Texas Owner ~16% (Scott any guesses??)

Why is Palo Verde (and other Nuclear Units) Important? PALO VERDE

Education

 Full time APS plus on-site long-term contractors

Source: Economic Impacts of Palo Verde Applied Economics, 2022

So Where Does Electricity In The SW Go From Here?

- One technology or multiple technologies?
- Will we sacrifice reliability or cost?
- Are any technologies completely environmentally friendly?

And How Does It Affect Our Water Supplies?

- What technology changes will occur in the next 5, 10 or 20 years?
- And are we willing to change our opinions over time?
- Will I blindly follow my favorite news channels talking points or will I research and become educated?

