Preparing for Wildfires in the Colorado Front Range – City of Westminster Case Study

2022 MSSC Annual Salinity Summit

Tim Rynders, P.E. Ryan Decker, P.E.

February 24th, 2022

Agenda

- Why are we preparing for wildfires in Colorado?
- Can we defend preparing for "unprecedented"?
- What impacts do we see from wildfires?
- Pilot Testing approach
- Pilot Testing results
- Questions

Photo courtesy of Art Messal via Estes Park Trail-Gazette

Why are we preparing for wildfires in Colorado (and most everywhere, too)?

Grizzly Creek Fire, Colorado, Post-fire Debris-flow Hazard Map

By Landslide Hazards AUGUST 10, 2020

Global climate snapshot

Monthly global mean temperature 1851 to 2020 (compared to 1850-1900 averages)

1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	°F	°C
																	> 2.7	> 1.5
1000	1000	1070	1071	1070	1072	1074	1075	1070	1077	1070	1070	1000	1001	1007	1002	1004	2.16 to 2.7	1.2 to 1.5
1000	1009		10/1	10/2	10/3	10/4	10/3	10/0			10/3			1002	1003	1004	1.8 to 2.16	1 to 1.2
					A D				A			À					1.44 to 1.8	0.8 to 1
1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1.08 to 1.44	0.6 to 0.8
					X												0.72 to 1.08	0.4 to 0.6
1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	0.36 to 0.72	0.2 to 0.4
																	0.18 to 0.36	0.1 to 0.2
1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	0 to 0.18	0 to 0.1
							Y				Y						-0.18 to 0	-0.1 to 0
1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	-0.30 10 -0.18	-0.2 to -0.1
		Y	Y Y								Y Y						-1.08 to -0.72	-0.4 to -0.2
1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	-1.44 to -1.08	-0.8 to -0.6
																	De	c Jan
1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	Nov	Feb
																	Oct	EAR
1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	Sep	Apr
																	Ji	ul Jun
2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		

Data: HadCRUT5 - Created by: @neilrkaye

Increased prevalence and unstoppable "mega" fires

U.S. Wildfire Data from 1983-2020 (Source: National Interagency Fire Center)

The Age of Megafires: The World Hits a Climate Tipping Point

ANALYSIS

From Siberia to Australia to the western U.S., massive fires have consumed millions of acres this year and spawned fire-generated tornados and other phenomena rarely seen before. Scientists say the world has entered a perilous new era that will demand better ways of fighting wildfires.

BY ED STRUZIK · SEPTEMBER 17, 2020

My my, how things have changed.

Source: Reuters

Can (and should) we seek to prepare for "Unprecedented"?

New "unprecedented" challenges from this year

- Wildfire "season" expanding
- \$1B insurance loss on Dec 30
- When can we do low demand improvements to WTPs?

After Catastrophic Fire, Colorado Fights a New Hazard: 10 Inches of Snow Source: NYT

Those whose homes survived huge fires were struggling against new threats from cold and ice. At least three people were missing and feared dead as the authorities confirmed 991 houses destroyed.

What impacts do we see from wildfires in our watersheds?

Research shows wildfires impact key water constituents

What tools do we have to meet these challenges?

Wildfire Impacts on Treatment

Case Study: City of Westminster, Colorado

Wildfire Impacts on Treatment Case Study: City of Westminster, Colorado

Marshall Fire (6,000 acres)

City of Westminster, CO Pilot Testing Approach

Pilot Project Background

- City of Westminster, CO Pop ~120,000
- Two existing water plants:
 - Semper WTP (1969) 44mgd Conventional
 - Northwest WTF (2001) 15mgd MF

Table 3-2. Benchmarked Raw Source Water Quality for Normal, Challenging, and Catastrophic Conditions

	Normal	Challenging	Catastrophic		
Source of Information	5 th and 95 th Percentile Values for Standley Lake	Min or Max Values for Standley Lake (2017-2018; Sep 2013 Flood)	Min or Max Values for Standley Lake (2017- 2018; Sep 2013 Flood)		
	(2017-2018)	FHL Canal First-Flush Event (Day 2)	Post-Wildfire Rain Event		
Turbidity, NTU	1 to 6.4	<60	<300		
TOC, mg/L	1.4 to 2.6	<3.3	<12		
UV254, 1/cm	0.03 to 0.04	0.06	<0.54		
SUVA (L/mg-m)	1.5 to 2.1	<1.8	<4.5		
Alkalinity, mg/L	50 to 60	<48	<48		
рН	7.2 to 8.2	<7.1	<7.1		
Manganese, mg/L	0.01 to 1.2	<1.6	<1.6		
Temperature, deg F	40 to 70	40 to 70	>70		
Hydrogen Sulfide	None	High	Very High		
Cyanotoxins	Below Detection	Exceeds HALs	Exceeds HALs		
Taste and Odors	< 3 TON No objectionable T&O year-round	>10 ng/L Geosmin/MIB	>100 ng/L Geosmin/MIB		
Cryptosporidium Bin Classification per LT2ESWTR	Bin 1	Bin 1	Possibly Bin 2 or Higher		

Pilot Drivers for Westminster

- Reduce cost of new WTP by increasing filter surface loading rate to reduce size of filters
- Select preferred course media (exhausted GAC or anthracite)
- Evaluate potential impact of a fire in the watershed
- Validate a robust treatment plant design

the Monte Carlo Simulations for All Alternatives

Major Pilot Phases Aligned with Temperature

Pilot Testing Results

F2 (A/Cl2) F3 (GAC/O3) F4 (A/O3) - Target

Wildfire Runoff Spike Tests

- Create concentrated spike solution, mix with raw water at up to 1:10 ratio
- Received recent wildfire ash from USFS (6.5kg)
- Mixed in 1,100 L raw water for 24hours to dissolve/suspend materials

Concentrate: 22mg/L TOC, 115 NTU Feed: 4mg/L TOC, 20 NTU

\rightarrow System sailed through test...

Wildfire Runoff Spike Tests – Why didn't it work?

- Clear Creek Watershed
 - ~350,000 acres
- Cameron Peak and East Troublesome Fires
 - ~200,000 acres
- Ash collected for pilot
 - ~10 ft²
- → Runoff from a burn area concentrates the <u>fine material</u> from <u>thousands</u> of acres

10/31/20 2145 hrs 193,774 Total Acres 188,910 Grand Zone 4,864 Thompson Zone Proposed Doper Line
Promoti Fire Line
Promoti Fire Line
Promoti Service
Dureou of Land Menageme

olmaij National Park Service (National Park desOfter or Unknown State Land) State Other or Unknown als dermas dermas Area, National Park Service

Wildfire Runoff Spike Tests

- New plan: Compost and odorant. Turbidity, TOC, T&O.
- 500 lbs of composted manure
- 1 gal of liquid smoke

Feed > 100 NTU, 12 mg/L TOC

→ Filter UFRVs dropped to
~10,000... But filtrate turbidity
and TOC remained ~average

Pilot testing evaluated chlorine, ozone, and ozone-BAC for turbidity removal—All were effective

Impacts of chlorine, ozone, and ozone-BAC on TOC removal

Impacts of chlorine, ozone, and ozone-BAC on SDS-DBPs for simulated wildfire spike

Taste and Odor Panel Screening on Simulated Wildfire Spike Test

FILTER 2 Cl₂-Anth/Sand

"Smells like an ashtray."

"Intense smoke / VOC. Would definitely result in customer complaints."

"Smoky residue, strong odor."

FILTER 3 O₃-GAC/Sand

"Smells the cleanest. Light musty smell."

"Very slight musty odor. Essentially non-detect."

"No smell apparent, very clean."

FILTER 4 O₃-Anth/Sand

"Slightly more musty smell. Not very strong."

"Very low-level smoke or VOC odor. Detectable but not overwhelming at low temp."

"Possible slight odor, hard to tell."

Summary—Implications of Pilot Plant Results for Process Train Selection

Treatment Process	UFRV (>15k)	Turbidity (<0.1)	Mn (<0.015)	TOC Removal	T&O
Chlorine-Anth/Sand	=	+	+	=	-
Ozone-GAC/Sand	=	+	+	+	+
Ozone-Anth/Sand	+	+	+	+	=

- All pilot filters meet requirements at all tested loading rates.
- Ozone-Biofilters offer improved organics reduction and T&O removal.
- GAC offers slight improvement over anthracite for organics and T&O.

Summary—Implications of Pilot Plant Results for Process Train Selection

Filter	UFRV (>15k)	Turb (<0.1)	Mn (<0.015)	TOC Removal	T&O
F2 (Anthracite/Cl2)	Good	Best	<mark>Best</mark>	Good	Worst
F3 (GAC/O3)	Good	Good	<mark>Best</mark>	Best	<mark>Best</mark>
F4 (Anthracite/O3)	<mark>Best</mark>	<mark>Best</mark>	<mark>Best</mark>	<mark>Best</mark>	Good

- All tested filters meet requirements at all tested FSLRs.
- Ozone-Biofilters offer improved organics reduction and T&O removal.
- GAC offers slight improvement over anthracite for organics and T&O, but slightly worse UFRV and turbidity.

Summary—Preparing for Wildfire Runoff

- 1. Source Water quality protection measures (forest management, multiple raw water sources, early warning/bypass SOPs, storage)
- 2. Solids handling and residuals management can be the weak link and a significant investment for catastrophic condition sizing
- 3. Taste and odor can be most difficult element to mitigate with conventional treatment approaches
- Long term effects particularly concerning from increased nutrient loading => algal impacts

Questions?

