Soil Salinity as a Major Challenge for Sustainable Agriculture in the Low Desert of California

Ali Montazar

Irrigation and Water Management Advisor University of California ANR

2022 MSSC Annual Salinity Summit Las Vegas, February 24-25, 2022

California Low Desert Region • Colorado River as main source of ag. Water 3-inch annual rain Dominated by heavy soils / low organic matter Diverse cropping systems/irrigation practices High desert **California Deserts** Low desert ➤ ≈ 680,000 acres Imperial - Palo Verde - Coachella $\succ \approx 4.1 billion Ag. Valleys

Where does this data come from? Water conservation/irrigation studies over the last 5-year

- 78 commercial fields in the low desert of CA
- 12 various commodities including alfalfa, onions, carrots, lettuce, spinach, date palm, olives, lemon, sugarbeets, wheat, kleingrass, and sunflowers
- Various soil types and conditions
- Various irrigation practices (flood, furrow, solid-set sprinkler, drip, subsurface drip, linear-move sprinkler)

Monitoring stations in experimental fields

Plant, soil, and water use/crop water consumptive data

Research staff

Salinity survey – Summer 2021

Soil salinity map in date palms

Westmorland Winterhaven 20 dS/m OR 5.1 dS/m 11,000 ppm

EC_=

Monitoring Station
1-2 ft. depth

0.64 – 2.04 dS/m

Monitoring Station

6.51 - 32.57 dS/m

Monitoring Station

Surveyed in May 2019

0.77 – 7.62 dS/m

Soil salinity map (date palm located in Westmorland)

ECe varies from 4.6 to 61.9 dS/m

Drainage issue?

ECe dS/m

Monitoring Station

3-4 ft. depth **deters** 40 80 120 160 0 20

Soil salinity within the soil profile (six date palms)

October, 2019

October, 2020

Date palm 5 located in Westmorland. This date palm has sodium hazard as well (SAR: 20-80)

Soil salinity within the soil profile (drip irrigated field-1)

- Higher level of salinity on the east side of the field
- High soil salinity on the topsoil
- Drain tiles work effectively

Grower applied 90 lbs./ac Gypsum before planting.

Soil Calcium and Sodium levels (drip field-1)

Soil Chloride levels (drip field-1)

Soil salinity within the soil profile (drip irrigated field-2)

Some tile drains could work effectively, some couldn't .

Salinity assessment (furrow irrigated field)

- A salt-affected field
- Drainage issue?

(6-18 inches depth) Meloland and Holtville Loam

Salinity assessment (sprinkler irrigated field)

- Uniformity in salinity level
- No salinity and drainage issues

(6-18 inches depth) Vint and Indio very fine sandy

100

150

50

200 m

"Land productivity is highly depending on the effectiveness of salinity management."

Salinity reduces actual crop water use and yields.

Drip irrigated onion field (February 7, 2021) Mean yield: 21.9 ton/ac vs. 17.7 ton/acre

Soil salinity map in alfalfa fields

(1 - 2 feet depth)

October 2020

EC_e in dS/m 0.68 - 1

1.01 - 1.32

1.33 - 1.64

165 - 197

100

150

200

Field 3 (flat)

Field 1 (furrow)

Field 2 (furrow)

Red plots: deficit Blue plots: grower practice

0 25 50

Soil salinity before and after leaching

- This field was leached using <u>flood irrigation</u> during September 2021.
- Leaching was effective and the salts were drained from the soil profile.

Soil salinity before and after leaching

- This field was leached using <u>sprinklers</u> during September (data demonstrates salinity on SEP 24, 2021).
- Leaching was effective, but NOT completed.

Drip irrigated field with drainage issue

Leaching (flood) won't be effective to sustain land productivity if drainage system doesn't work properly. Sub-surface drainage (tile) system delivers water to surface drainage system. All the drainage water (Imperial and Coachella Valleys) ends up in the Salton Sea.

Objects found inside tile drains in commercial fields (Imperial Valley)

Importance of maintaining drainage system!

Key Takeaways

- Leaching is the most effective tool to maintain salinity (the optimal strategy depends on irrigation practice, soil types, and cropping systems. Research Needs!)
- Effective drainage system is a <u>MUST</u> to sustain land productivity over time (Drainage issues! More Efforts!)
- More salinity hazard than sodium hazard in the desert (high levels of Calcium, Sodium, Magnesium, Chloride)
- Gypsum is appropriate amendment for fields with sodium hazards <u>NOT</u> necessarily for salt-affected fields (Sulfur-based amendments???)

Thank You (Q & A)

Special thanks to:

- Cooperative farms
- USDA-NRCS, CDFA, CA Commodity Boards & Imperial County Agricultural Benefits Program
- UC academics/staff, USDA Salinity Lab, and students

