

Case Study: Westfield, MA – GAC From Study to Construction

### Site Overview





#### **PFAS Treatment**

• Available treatment technologies for PFAS removal:









#### GAC vs. AIX - What Do We Know?

|                                          | GAC |                                                           | AIX |
|------------------------------------------|-----|-----------------------------------------------------------|-----|
| 10 minute Empty Bed Contact Time (EBCT)  |     | 2 to 3 minute EBCT                                        |     |
| Larger & taller infrastructure footprint |     | Smaller & shorter infrastructure footprint                |     |
| GAC media is less expensive              |     | IX media is more expensive                                |     |
| Well established technology              |     | Not as extensively practiced as GAC                       |     |
| Initial backwash is required             |     | Backwashing not recommended. Initial rinsing is required. |     |

- Both generate spent media requiring off-site reactivation or incineration
- Effectiveness for removing longer chain and shorter chain PFAS must be confirmed using the site-specific water
- Pretreatment may be needed for both technologies to increase media life span



# **Bench-Scale Testing**

 Bench-scale column tests performed at CDM Smith's Bellevue Research & Testing Laboratory to investigate two (2) GAC products (coal-based vs. coconut-based)



- ✓ 9.8 minutes of empty bed contact time (EBCT)
- No measurable GAC breakthrough of any PFAS
- No change in anions levels
- ✓ No detection of arsenic
- No generation of long-chain PFAS from post-GAC treatment with sodium hypochlorite and phosphate
- Estimated longevity for GAC = 27,000 bed volumes



# **Conceptual Design**

- PFAS treatment facility with a 2,700 gpm capacity (Combined capacity of Wells 7 and 8)
  - Sodium hypochlorite and phosphate chemical systems
  - Laboratory / office area
- Develop facility floor plan and site plan
- Cost estimate
- Permitting requirements





# **Perspective View**

Design Rendering and Spring 2019 Status





# **Completed Treatment Plant**







#### Costs

- \$5.5 million construction cost.
- Biggest OPEX cost is media replacement estimated \$120,000/year
- Additional sampling \$300/sample, 8 samples per month, \$28,800/year
- Additional labor for to check on plant 2 manhours/day
- Additional utility cost for gas and electricity



### **Current Status**

- Construction started in mid-August 2018; plant placed on-line in 2020.
- Plant has been running for 16+ months; still seeing non-detect on 6 PFAS compounds
- The plant has produced nearly 400,000,000 gallons of drinking water since initial startup.
- Bench scale testing indicated ~27,000 bed volumes as the GAC longevity on this water. Plant has processed over 23,000 bed volumes to date.
- No backwashing has been needed yet, since initial plant startup. No pretreatment (Fe/Mn removal, bag filters, etc.) was needed on these groundwater sources

