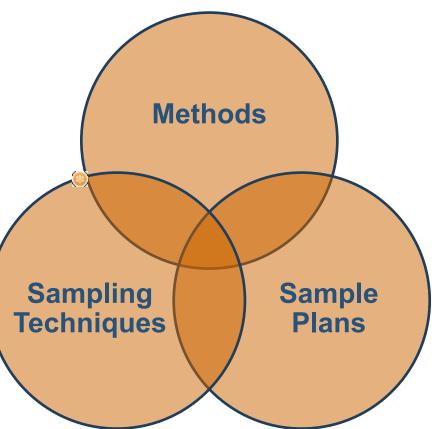


Eaton Analytical

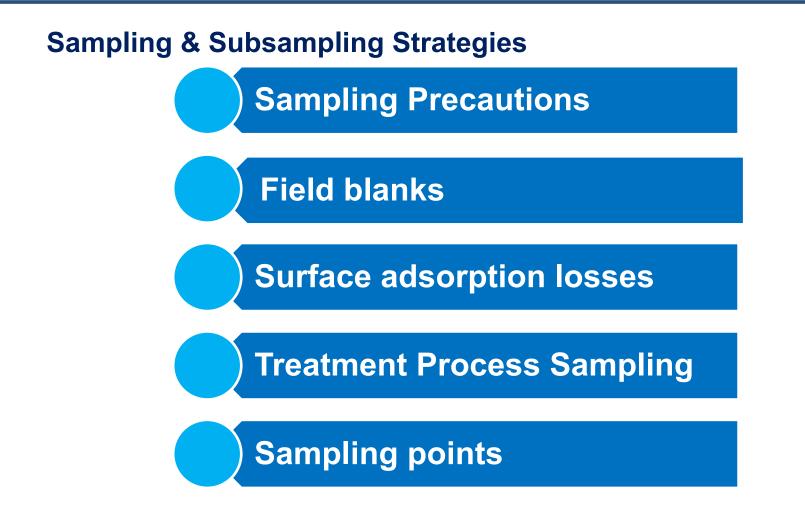
PFAS SAMPLING VARIABILITY

Bradley Cahoon


2022 MSSC Annual Salinity Summit

February 24th

www.EurofinsUS.com/Eaton


Selection of Sampling Techniques And Analytical Methods to Help Ensure High Quality Data

Sampling Instructions

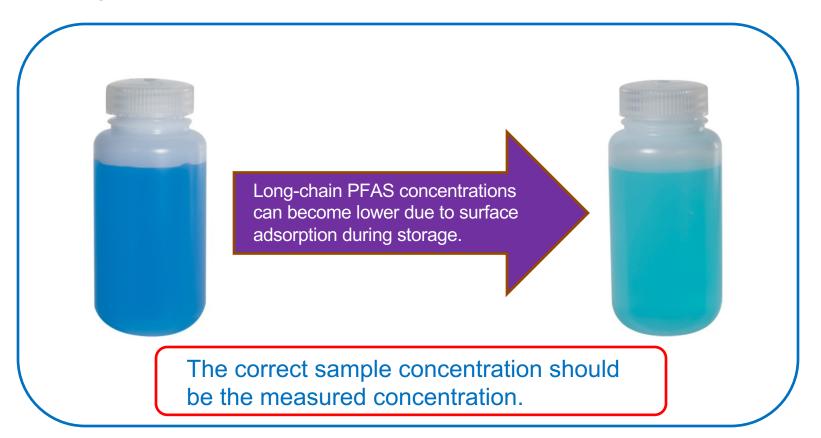
Sampling Clothing and Other Considerations


• Avoid wearing clothing or boots containing Gore-Tex or using materials containing Tyvek.

• Avoid using cosmetics, moisturizers, heavy fabric softeners on clothes the day of sampling.

• Sample PFAS first if your cooler contains other sample collection bottles! Other sample containers for other methods may have PFAS present.

Are my containers and supplies are PFAS free?


Field Blanks

What is my sample concentration level?

How much PFAS can be lost on HDPE bottle surfaces?

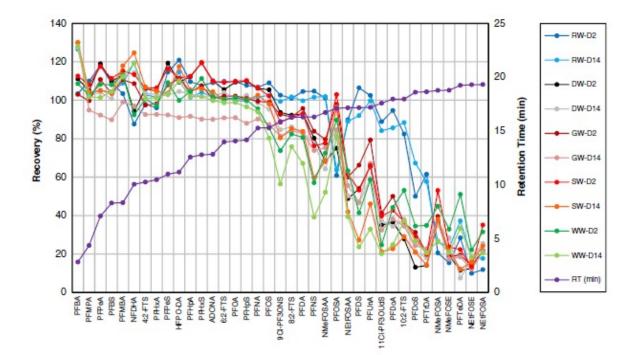
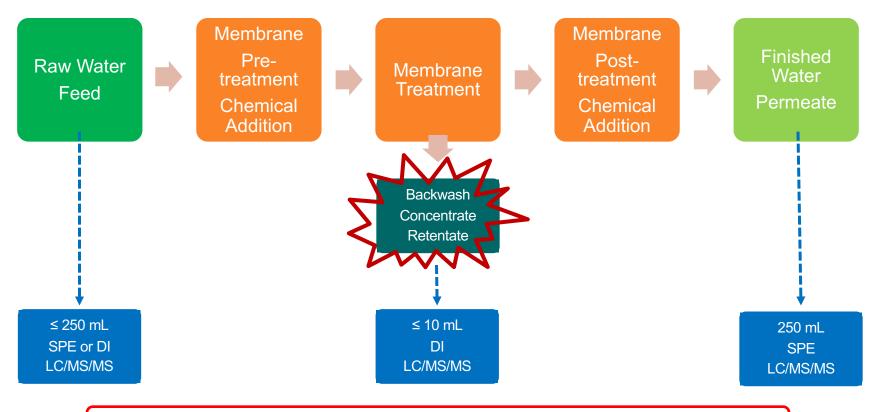



FIGURE 5 Recoveries of per- and polyfluoroalkyl substances fortified into 8-oz high-density polyethylene sample bottles at 400 ng/L and stored at refrigeration temperature (1–6 °C). DW, drinking water; GW, groundwater; RW, reagent water; SW, surface water; WW, wastewater

Membrane Treatment

Subsampling may not be a good idea unless it is done properly.

Methods and method attributes

Solid phase extraction / direct injection methods

Branched vs. linear PFAS

Isotope dilution

Method Reporting Limits

Solid Phase Extraction (SPE) Methods

SPE-LC/MS/MS 250 mL sample to 1 mL extract

EPA 537/537.1 – RP-SPE, Internal Standards

14/18 analytes, potable water

EPA 533 – WAX-SPE, Isotope Dilution

25 analytes, potable water

Draft CWA EPA 1633 – WAX-SPE, Isotope Dilution

~ 40 analytes, non-potable water

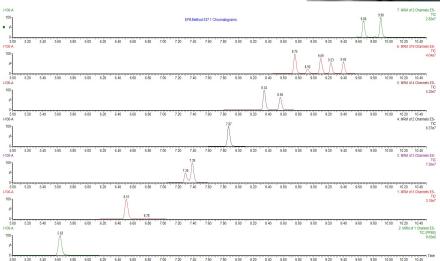
DoD/DoE QSM 5.3 – WAX-SPE, Isotope Dilution

~ 25 analytes, non-potable water

DI-LC/MS/MS

1:1 Sample:MeOH

SW 846 EPA 8327 – External Standard Calibration 24 analytes, non-potable water


ASTM D7979-17 – External Standard Calibration 14+7 analytes, non-potable water

Solid Phase Extraction LC/MS/MS Methods

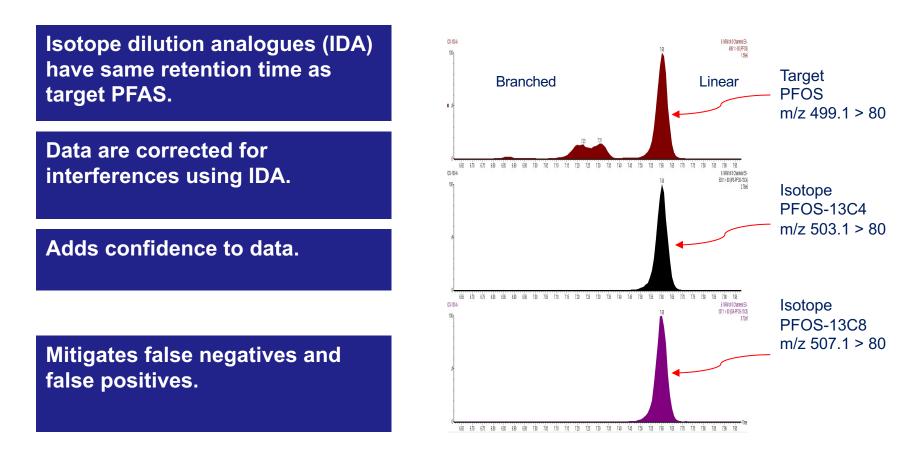
NOTE USE OF ISOTOPES

Method	EPA 537.1	EPA 533
250 mL sample	14 days Trizma pH 6 – 8 ≤6°C	28 days ammonium acetate pH 6 – 8 ≤6°C
1 mL extract	28 days 96% MeOH/water Room Temp.	28 days 80% MeOH/water Room Temp.
IS / IPS	Internal standards	Isotope performance standards
SS / IDA	Surrogate standards	lsotope dilution analogues
Calibration	Internal standard calibration	lsotope dilution calibration

🛟 eurofins

PFAS Isomers

somer	Name	Structure	Percent Composition by "F-NMR	
1	Potassium perfluoro-1-octanesulfonate	CF3CF2CF2CF2CF2CF2CF2CF2CF2SO3-K*	78.8	Linear PFOS
2	Potassium 1-trifluoromethylperfluoroheptanesulfonate**	CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CFSO ₃ 'K* CF ₃	1.2	*
3	Potassium 2-trifluoromethylperfluoroheptanesulfonate	CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CFCF ₂ SO ₃ ·K* CF ₃	0.6	
4	Potassium 3-trifluoromethylperfluoroheptanesulfonate	CF ₃ CF ₂ CF ₂ CF ₂ CFCF ₂ CF ₂ SO ₃ ⁻ K* CF ₃	1.9	$ \mathbf{x}\rangle$
5	Potassium 4-trifluoromethylperfluoroheptanesulfonate	CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ CF ₂ SO ₃ 'K ⁺ CF ₃	2.2	
6	Potassium 5-trifluoromethylperfluoroheptanesulfonate	CF ₃ CF ₂ CFCF ₂ CF ₂ CF ₂ CF ₂ CF ₂ SO ₃ 'K* CF ₃	4.5	Branched
7	Potassium 6-trifluoromethylperfluoroheptanesulfonate	CF ₃ CFCF ₂ CF ₂ CF ₂ CF ₂ CF ₂ SO ₃ *K* CF ₃	10.0	PFOS
8	Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate	CF ₃ CF ₃ CCF ₂ CF ₂ CF ₂ CF ₂ SO ₃ ·K*	0.2	
9	Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate	CF3 CF3CF2CCF2CF2CF2SO3'K* CF3CF2CF2CF2CF2SO3'K*	0.03	✔// Only ir✔/ isomer
10	Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate	CF3 CF3CFCFCF2CF2CF2SO3*K* CF3	0.4	Isomer
11	Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate	CF3 CF3CFCF2CF2CF2SO3'K* CF3 CF3	0.07	


- Isomers have the same molecular formula and but differ in "shape or structure"
- Different industrial processes produce linear over branched isomers
- Mixed usage of formulas has resulted in blends in the environment

Only including the linear isomer will bias the results low.

🛟 eurofins |

Why Use Isotope Dilution Analysis?

PFAS Method Reporting Limits (MRL)

MRLs 2 to 20 ng/L (PPT)

One part per trillion is the equivalent of one grain of sand in an Olympic-size swimming pool.

Compound	acronym	CAS	537.1	533	L402	MRI
Perfluorobutanoic acid	PFBA	375-22-4		~	~	5
Perfluoropentanoic acid	PFPeA	2706-90-3		1	1	2
Perfluorohexanoic acid	PFHxA	307-24-4	1	~	1	2
Perfluoroheptanoic acid	PFHpA	375-85-9	1	~	1	2 (10
Perfluorooctanoic acid	PFOA	335-67-1	1	1	1	2 (20
Perfluorononanoic acid	PENA	375-95-1	1	~	~	2 (20
Perfluorodecanoic acid	PEDA	335-76-2	1	~	1	2
Perfluoroundecanoic acid	PFUnA	2058-94-8	1	1	1	2
Perfluorododecanoic acid	PFDoA	307-55-1	1	1	1	2
Perfluorotridecanoic acid	PFTrDA	72629-94-8	~		1	2
Perfluorotetradecanoic acid	PFTeDA	376-06-7	1		1	2
Perfluorohexadecanoic acid	PFHxDA	67905-19-5		-	1	2
Perfluorobutanesulfonic acid	PFBS	375-73-5	1	~	1	2 (90
Perfluoropenanesulfonic acid	PFPeS	2708-91-4		1	1	2 (00
Perfluorohexanesulfonic acid	PFHxS	355-46-4	1	~	1	2 (30
Perfluoroheptanesulfonic acid	PFHpS	375-92-8	•	1		2 (00
Perfluoroneptanesulfonic acid	PFOS	1763-23-1	1	1	1	2 (40
Perfluorononanesulfonic acid	PFNS	68259-12-1	*	v	~	2 (40
Perfluorodecane sulfonic acid	PEDS	335-77-3			~	2
Perfluorodocane sulfonic acid	PFDoS	330-77-3 NA			~	2
					*	
V-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6	v	<u>.</u>	V	2
I-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9	V	8 (s)	1	2
Perfluorooctane sulfonamide	PFOSA	754-91-6			1	2
Vonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6		*		20
Perfluoro (2-ethoxyethane) sulfonic acid	PFEESA	113507-82-7		~		2
-ethylperfluorooctane sulfonamidoethanol	NEtFOSE	1691-99-2		2	1	2
I-methylperfluorooctanesulfonamidoethanol	NMeFOSE	24448-09-7		1. S	~	2
V-ethylperfluorooctane sulfonamide	NEtFOSA	4151-50-2			~	2
I-methylperfluorooctane sulfonamide	NMeFOSA	31506-32-8		10000	~	. 2
:2 Fluorotelomer sulfonic acid	4:2 FTS	757124-22-4		~	~	2
2 Fluorotelomer sulfonic acid	6:2 FTS	27619-97-2		~	~	2
2 Fluorotelomer sulfonic acid	8:2 FTS	39108-34-4		V	~	2
0:2 Fluorotelomer sulfonic acid	10:2 FTS	120226-60-0		3	1	2
Perfluoro-2-proxypropanoic acid	GenX (HFPO-DAfor 537.1)	13252-13-6	~	~	~	2
Dodecafluoro-3H-4,8-dioxanonanoic acid	ADONA	958445-44-8	~	~	1	2
	A DESCRIPTION OF THE OWNER	919005-14-4 (537.1)		1	1000	
-chlorohexadecafluoro-3-oxanonane-1 sulfonate	F-53B Major	73606-19-6	1	~	1	2
	9CI-PF3ONS (537.1)	756426-58-1 (537.1)		Q		-
1-chloroeicosafluoro-3-oxanonane-1-sulfonate	F-53B Minor	83329-89-9	1	~	1	2
	11CI-PF3OUdS (537.1)	63051-92-9 (537.1)				
Perfluoro-4-methoxybutanoic acid	PEMOBA	863090-89-5		1	1	5
Perfluoro-3-methoxypropanoic acid	PFMOPrA	377-73-1		1	1	5
Perfluoro-2-methoxyethoxyacetic acid	PFMOEOAA	151772-58-6			1	5
erfluoro-2-medioxyedioxyedioxyedioadd	PFIDOBA	80212-59-9			1	5
erfluoro-2-methoxyacetic acid	PEMOAA	674-13-5		1 3	1	5
erfluoro (3.5-dioxahexanoic) acid	PF02HxA	39492-88-1			1	5
Perfluoro (3.5.7-trioxaoctanoic) acid	PF030A	39492-89-2	· · · ·	a 3	~	5
Perfluoro (3,5,7,4-thoxaoctanoic) acid Perfluoro (3,5,7,9-tetraoxadecanoic)acid	PF030A PF04DA	39492-90-5		-		5
Vafion Byproduct 1	Nation BP1	29311-67-9		8 <u>8</u>	~	5
21						
Nafion Byproduct 2 MRL for UCMR3	Nation BP2	749836-20-2		25	45	5

Sampling should use PFAS-free sample containers and supplies.

- It is a good practice to always collect a blank sample if applicable.
- Isotope dilution methods are recommended to mitigate matrix interferences

➢ EPA Methods 537.1 and 533 are effective for monitoring of PFAS in raw, finished and treatment process waters.

- Some laboratory proprietary methods are available for additional PFAS.
- Subsampling is better to be avoided.
- Quantitative subsampling with properly rinsing sample containers with methanol is critical to achieve reliable results.

Adsorption losses of PFAS on surfaces in water feed tanks/bottles can be significant for calculating removal efficiency, depending on structures of selected target analytes.

- Adsorption losses of PFAS generally increase with the increase of PFAS chains longer than C8.
- For fortified raw water, should consider to collect a sample to measure the feed concentrations.

Direct injection LC/MS/MS methods are applicable for backwash concentrate analysis.

- Isotope dilution analysis is highly recommended to compensate for matrix interferences.
- Small sample volumes are ideal.

Bradley Cahoon Bradley.Cahoon@EurofinsET.com 602-524-0423 **Eurofins Eaton Analytical, LLC** www.EurofinsUS.com/Env