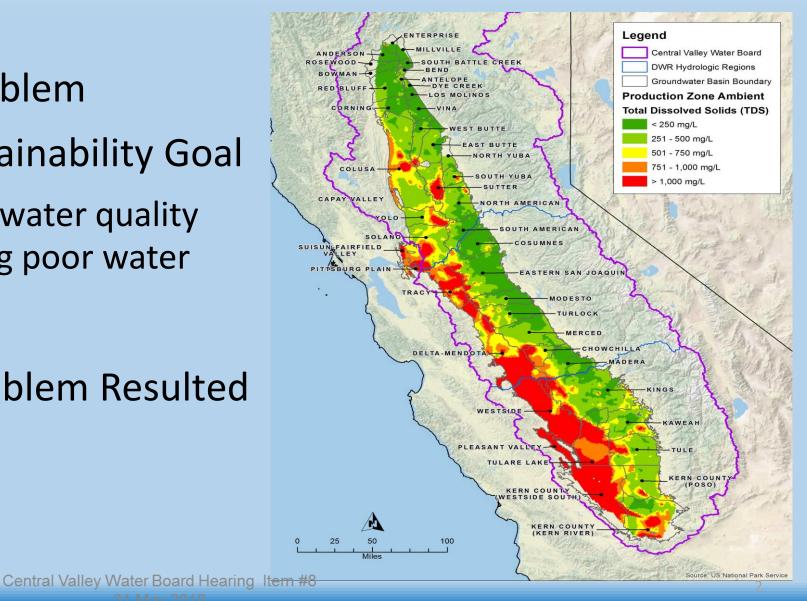
Central Valley Salinity Management Program Dr. Karl Longley, PE Professor Emeritus, California State University, Fresno Member, Central Valley Regional Water Quality Control Board



Salinity is a world problem. The world map shows countries which are investigating salinity. There are currently 77 million hectares of salinized land caused by human activities.

Source: Riverina Environmental Education Centre (Australia) website

Salinity Control Program Overview

- Basin-Wide Problem
- Long-term Sustainability Goal
 - Maintain good water quality while improving poor water quality
- ✓ This Salinity Problem Resulted in CV-SALTS


EXAMPLES OF SALT SOURCES

Delivered S. Delta Water

Wastewater (WW) Treatment Plants

Septic Tanks

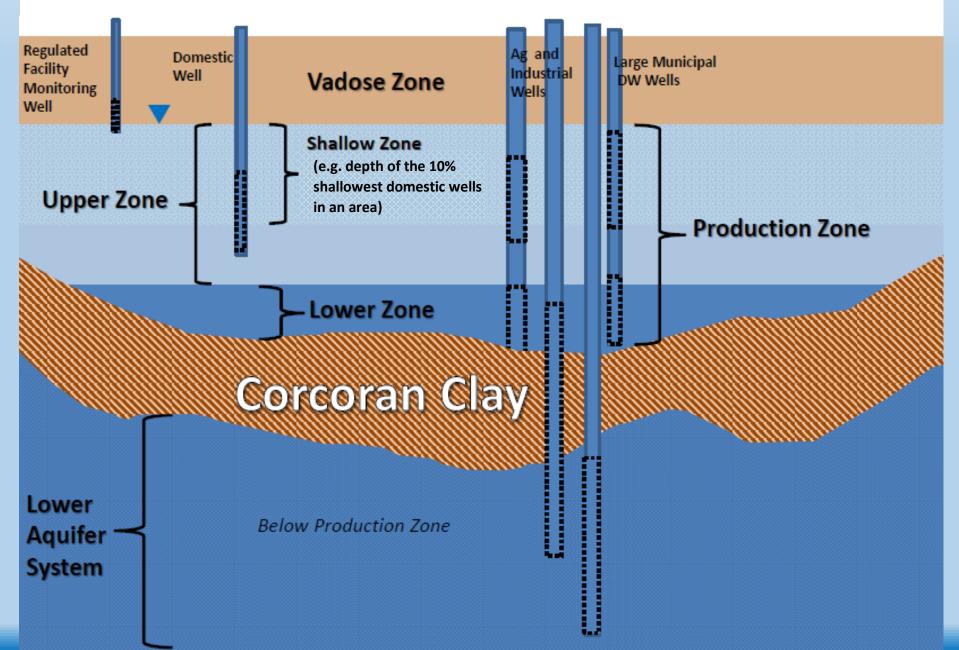
Food Processing WW

Manufacturing Process WW

Produced Water

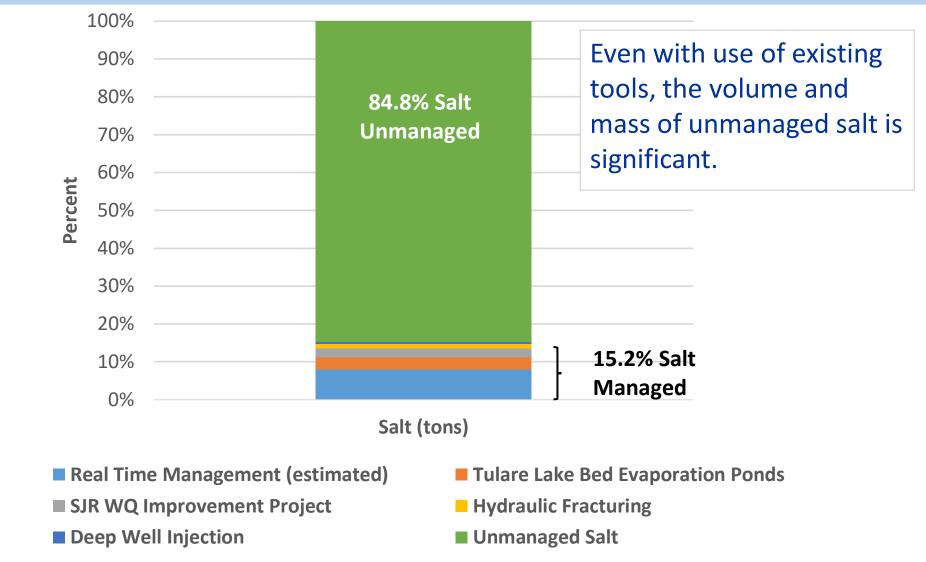
Dairy & Feed Lot WW

Irrigation Water & Runoff


Different Expressions of Salinity During Drought in Australia's Murray-Darling Basin

A town near the Glory River was abandoned after reductions in the Tigris flow shrank the canal and parched the surrounding wetlands. Photo by Julia Harte. https://blog.nationalgeographic.org/2013/04/24/ in-cradle-of-civilization-shrinking-riversendanger-unique-marsh-arab-culture/ Salt accumulation in an evaporation ponding basin for agricultural drainage water located on the western side of the San Joaquin Valley.

Schematic of Aquifer System Within Corcoran Clay Extent


Central Valley Salt Issues

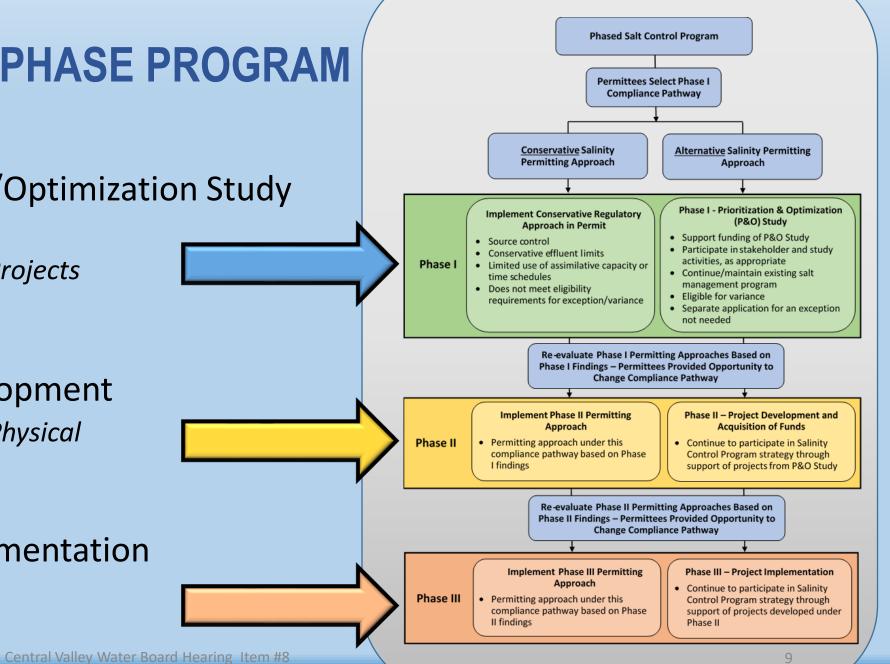
More salt enters the Central Valley Region than leaves

- Impacts (current/legacy)
 - Agricultural Production
 - Drinking Water Supplies
- Economic Cost
 - Direct Annual: \$1.5 Billion
 - Statewide annual income impact: \$3.0 Billion
- Diverse Sources of Salt
 - Ag Drainage
 - Soil Amendments (gypsum, etc.)
 - Industry (Produced Water, Food Processing, etc.)
 - Brackish Groundwater
 - Water Reclamation
 - Other

Achieving Salt Sustainability – Example Scenario from Southern Part of Central Valley

CV-SALTS: THREE PHASE PROGRAM

Phase 1: Prioritization/Optimization Study


- Expanded Evaluations
- *Physical/Non-Physical Projects*
- Governance/Funding

Phase 2: Project Development

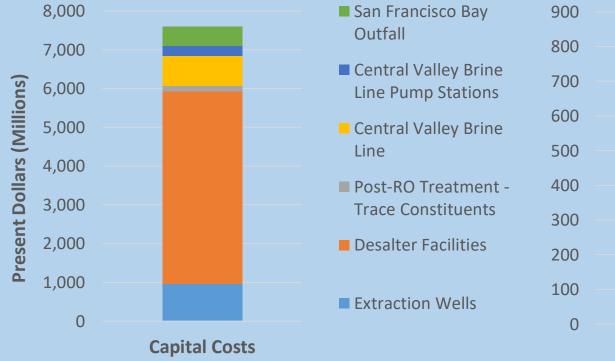
 Funding/Permits/Non-Physical Projects

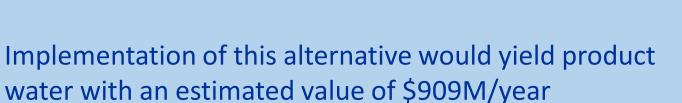
Phase 3: Project Implementation

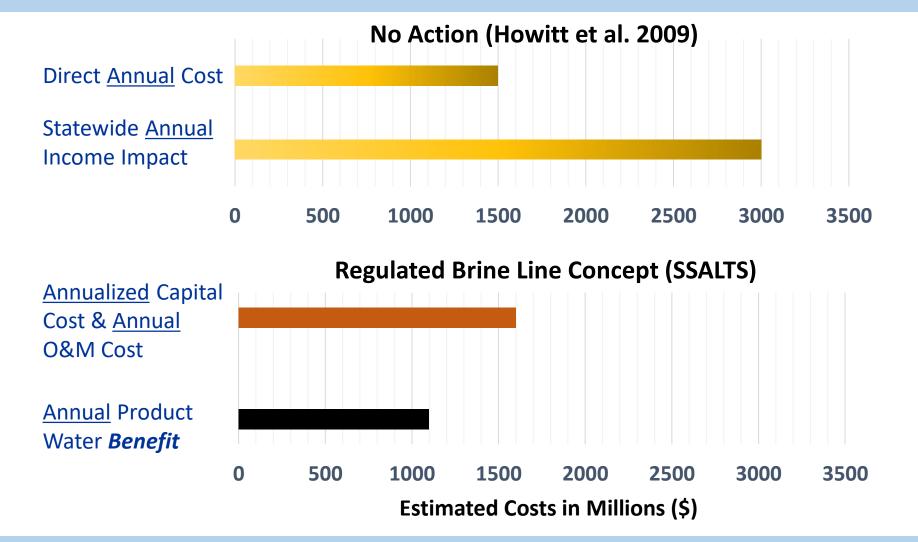
- Construction

Key Salt Management Alternatives

Treatment & Salt Recovery Technology	Brine Disposal and Storage
 Mature Technologies Reverse Osmosis Ion Exchange Lime Softening Evaporation Ponds Emerging Technologies Smart Integrated Membrane System (SIMS) WaterFX Aqua4 System – Multi-effect Distillation Zero Discharge Distillation by Veolia – Electrodialysis Metathesis New Sky Energy – Temperature Control and Electrodialysis Element Renewal – addition of polymers to remove trace elements 	 Brine Supply for Hydraulic Fracturing Deep Well Injection Salt Management Disposal Areas Landfills Dedicated Disposal Sites San Joaquin River Improvement Project San Joaquin River Real Time Management Transport Brine Out of Valley Truck/Rail Brine Regulated Brine Line Bay Area WWTP Permitted Bay Area Outfall


Achieving Salt Sustainability – Export the Salt


- Analysis shows that sustainability only achieved if the salt is exported out of the Central Valley (True??)
- Central to all evaluated salt management alternatives is a *regulated Central Valley brine line*
- SSALTS completed a conceptual level analysis
 - Preliminary Brine Discharge Alternatives
 - Via existing East Bay Municipal Utility District outfall
 - Via an alternative outfall to San Francisco Bay
 - Alternative Central Valley routes
 - Cost estimate Capital and O&M for Brine Line
 - Costs do not include development of local facilities to collect/transport brine to the Central Valley brine line


Conceptual Level Costs for Regulated Brine Line Alternative – Outfall to San Francisco Bay

O&M Costs

Regulated Brine Line Concept vs. No Action

ALTERNATIVES

- If a marine disposal option is not available, OR
- If the cost is not sustainable, OR
- A marine disposal option takes too much recoverable water out of the Valley –
- Then, what are <u>other</u> alternatives?
- There are many alternatives and all may be implemented even if disposal to a marine environment is finally determined to be the best solution.

Managed Groundwater Recharge (MGWR) & Its Importance

- 1. Large amount of aquifer volume available for storage as result of over pumping.
- 2. Significant amounts of groundwater recharge historically occurred as a result of flooding during wet years.
- 3. Past development of surface water management included dams that reduced flooding but also very significantly reduced groundwater recharge in the San Joaquin Valley.
- 4. An effective MGWR program utilizing water from periods of high surface water flows will
 - i. Provide a pathway to groundwater resource recovery, and
 - ii. Provide dilution to existing contaminants in the groundwater.

Brine Disposal – Does It Have To Be A Money Sink On The Red Site Of the Ledger?

Think **Recycling** – It May Provide **Economic Opportunity** And **Save Water** In the Process.

Brine Treatment Produces Revenue Sources

- 1. Safe, Usable Water Result of Effective Recycling
- 2. Product Recovery
 - 2.1 Market for product should be early consideration
 - 2.2 Agricultural Drain & Tail Water
 - 2.3 Resource recovery opportunity is site dependent
 - 2.4 Possible products
 - Acids
 - Bases
 - Pure Salts (gypsum, sodium bicarbonate, etc.)
 - Arsenic (Challenge: RCRA)
 - Selenium (Challenge: RCRA)

Some Parting Thoughts

- 1. Sustainability is the "Name of the Game" Both in Terms Of:
 - i. Providing A Water Supply, Particularly In Areas Of Limited Useable Water Availability, And
 - ii. Providing Both Efficient Water Reclamation (Water Recovery & Energy Requirement) & Resource Recovery.
- 2. Consider Water Recharge Particularly Where High Quality Water Is Available
- 3. Agricultural Water Uses Are the Major Water Uses In Some Areas
 - i. Agricultural Drain & Tail Water Can Be Important Resource
 - ii. Use Of Salt Tolerant Plants May Provide Important Treatment Process That Also Provides Revenue.