Exploring Physical and Behavioral Responses to Salinity in Agriculture: A Case Study from Kern County, California

Josué Medellín-Azuara (UC Davis)

Duncan MacEwan (ERA) Richard Howitt (ERA) Jay R. Lund (UC Davis) 2017 Multi-State Salinity Coalition Annual Salinity Summit Las Vegas, Nevada, March 2, 2017

Outline

- 1. Water Resources in California
- 2. Agriculture in California
- 3. Behavioral and Physical Responses
- 4. Case Studies
 - A. Central Valley Salinity Study (2009)
 - B. Sacramento-San Joaquin Delta (2014)
 - C. Kern County (2016)
- 5. Concluding Remarks

Water Resources in California Made Simple

- Mean annual runoff
 ~70 maf
- Water Use
 - 10% urban
 - 40% agriculture
 - 50% environment
- Irrigated area 9.3 million acres
- Many thirsty places!

Water supply and Infrastructure

Hanak et al. (2011) Managing California's Water

Agriculture in California

- \$54 B in annual value (~\$40 M in crops)
- 300+ commodities
- 9.3 M acres (7M in Central Valley)
- 400,000 Jobs
- Largest in value and size in US
- About 30 MAF/yr in applied water
- Market Driven

Salinity in water and soil affects agricultural yields (\$370 million/year)

Sources:

- 2 million tons/year accumulation San Joaquin Valley
- Natural occurrence GW
- Imported water
- Poor drainage
- Mobilization of naturally occurring salts in root zone
- Minerals left by crops in root zone

http://www.cvsalinity.org/index.php/committees/ technical-advisory/conceptual-modeldevelopments/171-updated-groundwater-qualityanalysis-for-central-valley.html

A) Central Valley Salinity Study

Electrical Conductivity in Shallow Groundwater

Adapted from Medellin-Azuara et al. (2008). The Economic Effects on Agriculture of Water Export Salinity South of the Delta

MacEwan, Howitt, Medellin-Azuara (2016)

Central Valley Salinity Study Howitt et al . (2009)

Costs of Salinity Accumulation

Medellin-Azuara et al. (2008). The Economic Effects on Agriculture of Water Export Salinity South of the Delta

B) Case Study Sacramento-San Joaquin Delta

- Physical instability
 - Land subsidence
 - Sea level rise
 - Floods
 - Earthquakes
- Ecosystem instability
 - Habitat alteration
 - Invasive species
- Economic instability
 - High costs to repair islands
 - Worsening water quality for agric. & urban users

The "Big Gulp": 6.5 Magnitude Earthquake causing 20-Island Failure

0 - 6 hours: Islands flood with fresh water

6.5 Magnitude Earthquake causing 20-Island failure

12 – 24 hours: Salt water intruding into Delta

6.5 Magnitude Earthquake causing 20-Island failure

1 – 7 days: Salt water throughout Delta

6.5 Magnitude Earthquake causing 20-Island failure

30 days: A saline estuary

A Suite of Models

Delta Agricultural Production Model (DAP)

- Self-calibrated model
- Production terminated for flood and habitat
- Salinity effects, WAM, RMA.
 Closest station

Van Genuchten and Hoffman (1994)

No Significant Changes in Salinity Expected with Sea Level Rise, or Dual Conveyance

 WAM Historical hydrology, operations and exports, 4.9 MAF/yr of exports and 20 year time period (1980-2000)

Source: Medellin-Azuara et al. (2014) Ag. Losses from Salinity

Hydrodynamic models show little change in salinity and farm revenues

0

North

Central

South

West

East

C) Behavioral versus physical response: Kern County

Parcel level information to calibrate behavioral model

kern1997

Marginal effects of salinity by threshold salt tolerance

Crop Group	Threshold dS/m	Marginal Effect
Vegetable	1.4	-0.0184***
Fruit/Nuts	1.4	-0.0482***
Potato	1.7	-0.0202***
Vine	1.7	-0.0655***
Tomato	1.9	0.00315***
Alfalfa	2.2	0.0379***
Cucurbit	2.4	-0.000447
Corn	3.7	0.000601
Dry Beans	4.9	0.00352***
Cotton	5.1	0.0526***
Grain/Field	6.7	0.0302***
Fallow	n/a	0.0248***

Behavioral versus physical: grain

Behavioral versus physical: almonds and pistachios

Looking Forward

- CV-SALTS (Central Valley Salinity Alternatives for Long-Term Sustainability)
 - Safe Drinking Water
 - Achieve Balanced Salt and Nitrate Loading
 - Implement Managed Aquifer Restoration
- Management practices can help reduce 15% of the annual salt load
- Brine pipeline, biofuels, other projects

Conclusions

- Salinity in soil and irrigation water has a detrimental effect on crops (\$370 million/year by some estimates)
- Long term cost of inaction in managing salinity in the California's Central Valley will be high (\$1.5 billion)
- Agricultural impacts of salinity the Sacramento-San Joaquin Delta are small compared to other stressors
- Behavioral responses to salinity may help improve understanding of salinity impacts to irrigated agriculture

Thank you! jmedellin@ucdavis.edu

http://watershed.ucdavis.edu/Medellin