Electrodialysis Research Update

Mono-Valent Selective Ion Exchange Membranes for Saline Water Reuse and Desalination

> Charlie He, P.E., LEED AP Pei Xu, Ph.D.

Acknowledgement

US Bureau of Reclamation; Chris Hassert, Art Nunez, Binga Talabi, City of Scottsdale; John Balliew, Fernie Rico, Art Ruiz, City of El Paso

Presentation Outline

- ED/EDR Research Update
- Need of Selective Removal of Sodium
- Selected Testing Results
- Modeling and Blending Analysis
- Take Home Messages

ED/EDR Research Update

Electrodialysis Consists of Electrodes and A Stack of Membrane Cell Pairs

Electrodialysis with Normal Grade IX Membranes Remove All Cations and Anions

Realistic

Negative

Filename.ppt/8

Michael Jordan

My attitude is that if you push me towards something that you think is a weakness, then I will turn that perceived weakness into a strength.

Research and Engineering Expertise Turns Weakness into Strength

Selective Removal of Sodium

Selectively Removing Sodium is Desirable but Challenging – Ion Exchange & Softening

	Lime Softening	lon Exchange
Sodium		x
Calcium	X	Х
TDS		
Selectivity	No	Yes, but
Beneficial Selectivity	No	No

Selectivity Sequence for Typical Strong Acid Cationic Resin Ra²⁺>Ba²⁺>Pb²⁺>Sr²⁺>Cu²⁺>**Ca²⁺**>Zn²⁺>Fe²⁺>Mg²⁺>K⁺>Mn²⁺>NH₄⁺>**Na⁺**>H⁺ Selectivity Sequence for Typical Strong Base Anionic Resin CrO₄²⁻>SeO₄²⁻>**SO₄²⁻**>HAsO₄²⁻>HSO₄⁻>NO₃⁻>Br⁻>SeO₃²⁻>HSO₃²⁻>NO₂⁻>**Cl**⁻ >HCO₃⁻>OH⁻>F⁻

Selectively Removing Sodium is Desirable but Challenging - Membranes

	Lime Softening	lon Exchange	RO	NF	ED/EDR
Sodium		x	X	X	X
Calcium	X	Х	X	X	Х
TDS			X	X	X
Selectivity	No	Yes, but	No	Yes, but	Yes
Beneficial Selectivity	No	No	No	No	No

Sodium, Chloride	Calcium, Magnesium, Sulfate
Smaller ions, lower rejection	Larger ions, higher rejection

Selectively Removing Sodium is Desirable but Challenging - Membranes

	Lime Softening	lon Exchange	RO	NF	ED/EDR
Sodium		x	Х	Х	Х
Calcium	Х	Х	Х	Х	Х
TDS			X	Х	Х
Selectivity	No	Yes, but	No	Yes, bu	t Yes
Beneficial Selectivity	No	No	Νο	No	No
			NF90		N
De	escription	Tight	est (lower	MWCO)	Loosest (hi
Na	CI Rejection		90-96%)	5

98+%

98+%

MgSO₄ Rejection

Selectively Removing Sodium is Desirable but Challenging - Membranes

	Lime Softening	lon Exchange	RO	NF	ED/EDR
Sodium		x	X	X	X
Calcium	X	Х	X	X	Х
TDS			X	X	X
Selectivity	No	Yes, but	No	Yes, but	Yes
Beneficial Selectivity	No	No	No	No	No

Sodium	Calcium, Magnesium
Monovalent, lower charge,	Divalent, higher charge,
smaller ion	bigger ion

Selectively Removing Sodium is Desirable but Challenging – Innovative Membrane

	Lime Softening	lon Exchange	RO	NF	ED/EDR	Monovalent Selective ED/EDR
Sodium		x	X	X	Х	X
Calcium	X	X	X	X	X	X
TDS			X	X	X	X
Selectivity	No	Yes, but	No	Yes, but	Yes	Reported Yes
Beneficial Selectivity	No	No	No	No	No	Reported Yes

Defining Selectivity

Selectivity based on ppm

$$Selectivity_{Ca/Na} = \frac{Removal_{Ca}}{Removal_{Na}} = \frac{(Ca_{feed} - Ca_{product}) / Ca_{feed}}{(Na_{feed} - Na_{product}) / Na_{feed}}$$

Selectivity based on meq/L

Selectivity_{Ca/Na} =
$$\frac{[Ca_{feed}] - [Ca_{product}]}{[Na_{feed}] - [Na_{product}]}$$

Lower value means better removal of sodium

For Scottsdale, Salinity Poses A Challenge to Irrigation Reuse

Water Reclamation Plant to Reuse

SAR = Sodium Adsorption Ratio SAR = $[Na^+] / \{([Ca^{2+}] + [Mg^{2+}]) / 2\}^{1/2}$

Advanced Treatment Using RO Solved The Problem, But ...

Water Quality Goal Contractual Limit: <125 ppm Sodium Operating Target: <110 ppm Sodium

Alloca S

Water Reclamation Plant to Reuse Advanced Water Treatment Plant

For El Paso, Brackish Groundwater Desalination Using RO is Successful. But Can We Do Better?

Recovered Water Quality Goal Based on Minimum Effluent Standard for Discharging into the American Canal Extension

TDS < 1,200~2,500 mg/L SAR ≤ 29 – 6 logTDS

TDS (mg/ L)	SAR
2500	8.6
2300	8.8
2000	9.2
1900	9.3
1500	9.9
1200	10.5

Reference: Texas Natural Resources Conservation Commission

Selected Testing Results

DANGER HIGH VOLTAGE

Ö

] •	PR Funded Project Included Bench and t Testing at Two Sites							
		Phase 1 - Scottsdale Water Campus	Phase 2 - E Desalinat	l Paso KBH tion Plant				
	ite	Scottsdale Water Campus	El Paso Kay Ba Desalina	ailey Hutchison tion Plant				
	ation	July to December 2015	January to	April 2016				
	ective	Saline Water Reuse	Concentrate Management					
oogle Terme Privacy Se		Reclaimed Water	Brackish Groundwater	Groundwater Brine				
6	Feed TDS	1,150	3,252	11,000				
	Feed Sodium	235	738	2,900				
Explor	Goal	125 mg/L Sodium in product	TDS < 1,200 SAR ≤ 29 -	~2,500 mg/L - 6 logTDS				
ame.ppt/23	Summary	Unexpected low selectivity due to coating method	Improved Coa Improved	ting Method = Selectivity				

5 -

Filer

Several Types of Conventional & Innovative Membranes Were Used for the Testing

Membrane	AR204	CR67	AR112	CR671
Manufacturer	lonics/GE	lonics/GE	lonics/GE	lonics/GE
Characteristics	Normal grade	Normal grade	Mono – anion permselective	Mono – cation permselective
Thickness (µm)	500	560-580	580-690	560-580
Water content (g H ₂ O/g dry membrane)	46% of wet resin	46% of wet resin	20-25% of wet resin	46% of wet resin
Electrical resistance $(\Omega$ -cm ² in 0.01N NaCl)	8	12	22-26	12
lon exchange capacity (meq/g dry membrane)	2.40	2.10	1.6-1.8 Strong base 0.3-0.6 weak base	2.0-2.1

Note: NEOSEPTA membranes are also used in bench testing: normal grade membranes (AMX and CMX-SB) and NEOSEPTA monovalent permselective membranes (ACS and CMX-S).

Selective and Normal Membranes Demonstrates Same Desalination Efficiency

El Paso Brackish Groundwater 2 Stage Pilot ED

Selective Membrane Demonstrates Better Selectivity of Divalent Cations over Monovalent than Normal Membrane

El Paso Brackish Groundwater

same trends.

Selective Membrane Demonstrates Better Selectivity of Divalent Cations over Monovalent than Normal Membrane

El Paso RO Concentrate

Bench Testing Data Matches Well with Pilot Testing Results

Highlight:

- Bench and pilot operates under different conditions
- Bench testing can be used for pilot or full scale performance projections

Pilot Results
Bench Results
Normal Membrane
Selective Membrane
Ca/Na Selectivity
Mg/Na Selectivity

Value Adding Research Links Bench Testing, Pilot Testing, Modeling, and Full Scale Design

Scottsdale Blending Analysis and Cost Comparison

Scottsdale Blending Analysis and Cost Comparison – 1 MGD Reclaimed Water (2-stage)

	Baseline Alternative	Alternative 1A	Alternative 1	Alternative 2
	UF + RO	Normal EDR - WATSYS	Normal EDR - Testing	Selective EDR (Based on EP GW Testing)
Feed Water Flow (mgd)		1		
Feed Water Sodium (mg/L)		235		
% Flow Treated	60.5%	69.0%	<u>//</u> 100.0%	66.5%
Overall Recovery	88%	93%	92%	93%
Unit Recovery	85%	90%	90%	90%
Blended Water Flow (mgd)	0.88	0.93	0.92	0.93
Product Water Sodium (mg/L)	110	? 110	🐼 129	110
Product TDS (mg/L)	530	522	489	727
Concentrate Flow (gpm)	60	48	69	46
Concentrate TDS (mg/L)	7530	9662	7130	7130
Concentrate Sodium (mg/L)	1524	2136	1715	3940
Number of Product Line	-	7	8	6
Number of Stages	-	2	2	2
Capital (\$/gpd product flow)	\$6.1	\$5.0	\$5.6	\$4.4
O&M (\$/kgal)	\$1.09	\$0.82	\$0.80	\$0.79
Note	Blending based on RO Projection Model	Based on Modeling	Based on Pilot Testing	Based on El Paso GW Testing

Scottsdale Blending Analysis and Cost Comparison – 1 MGD Reclaimed Water (4-stage)

	Baseline Alternative	Alternative 1A	Alternative 1	Alternative 2
	UF + RO	Normal EDR - WATSYS	Normal EDR - Testing	Selective EDR (Based on EP GW Testing)
Feed Water Flow (mgd)		1		
Feed Water Sodium (mg/L)		235		
% Flow Treated	60.5%	69.0%	78.0%	57.5%
Overall Recovery	88%	93%	92%	94%
Unit Recovery	85%	90%	90%	90%
Blended Water Flow (mgd)	0.88	0.93	0.92	0.94
Product Water Sodium (mg/L)		110		
Product TDS (mg/L)	530	522	433	634
Concentrate Flow (gpm)	60	48	54	40
Concentrate TDS (mg/L)	7530	9662	9662	9662
Concentrate Sodium (mg/L)	1524	1927	1715	2287
Number of Product Line	-	7	6	6
Number of Stages	-	4	4	4
Capital (\$/gpd product flow)	\$6.1	\$6.5	\$7.6	\$6.5
O&M (\$/kgal)	\$1.09	\$0.88	\$0.83	\$0.81

Scottsdale Cost Estimates (UF RO vs. 2-stage and 4-stage Selective EDR)

Note: Costs include full system with residuals handling, chemical, and 30% contingency, 18% OH, admin & engineering. Does not include evaporation pond or other final concentrate disposal costs.

El Paso Blending Analysis and Cost Comparison

Filenam

El Paso Blending Analysis and Cost Comparison – 1 MGD RO Concentrate

	Alternative 1A	Alternative 2	Alternative 3	Alternative 3A
	WATSYS	Normal Grade	Selective (Condition 1)	Selective (Condition 2)
RO Concentrate Water Flow (mgd)		1		
RO Concentrate Sodium (mg/L)	2898			
RO Concentrate Calcium (mg/L)	717			
RO Concentrate SAR	25.1			
RO Concentrate TDS (mg/L)	10962			
% Flow Treated	100%	100%	100%	100%
Unit Recovery	58%	34%	36%	37%
Recovered Water Flow (mgd)	0.58	0.34	0.36	0.37
Product Water Sodium (mg/L)	580	753	522	485
Product Calcium (mg/L)	65	2	59	124
Product Water SAR	? 16.2	😂 101	15.1	10.2
Product TDS (mg/L)	9 1973	2026	9 1933	A 2323
Concentrate Flow (gpm)	291	461	444	439
Concentrate TDS (mg/L)	23376	15493	16042	15976
Concentrate Sodium (mg/L)	6099	3985	1915	4297
Number of Product Line	8	10	10	10
Number of Stages	4	4*	4*	4*
Capital (\$/gpd product flow)	\$4.1	\$10.9	\$9.2	\$9.2
O&M (\$/kgal)	\$5.62	\$7.44	\$8.25	\$8.25

* Line and stage design is specially configured. This table shows a 4-stage equivalent.

Take Home Messages

- Selective electrodialysis membrane removes more monovalent cations (i.e., sodium) than normal grade membranes
 - Good selectivity under wide range of current
 - Similar power consumption compared to normal grade membrane

Thank

Vou

Take Home

- Better selectivity for low TDS water than for concentrate
- Selective membrane can meet the required water quality for Scottsdale (Based on El Paso GW Selectivity with improved coating method)
- Very close, but may not achieve SAR goals for recovering El Paso RO concentrate due to low Ca:Na ratio and high Na removal goal

Questions?

Charlie He, P.E., LEED AP, CHE@carollo.com 602-263-9500, Carollo Engineers Pei Xu, Ph.D, pxu@nmsu.edu

575-646-5870, New Mexico State University

Electrodialysis with Selective IX Membranes Remove Monovalent Ions Preferably

Ion Switcher Concept Was Proposed to Solve Reclaimed Water Sodium Problem without Generating a Brine

Filename.ppt/36

High Sodium to Hardness Ratio Resulted in Reuse Challenges

SAR = Sodium Adsorption Ratio

SAR = $[Na^+] / \{([Ca^{2+}] + [Mg^{2+}]) / 2\}^{1/2}$ []: use meql units

Monovalent Anions Such As Chloride Also Pose A Compliance Challenge

Whole Effluent Toxicity Permit Action Level: Toxic Unit 2.0 or less

Fathead Minnow (Pimephales promelas) 7-day larval survival and growth test

Water Reclamation Plant

Discharge to River

Water flea Ceriodaphnia dubia 3-brood survival and reproduction test

Selenastrum capricornutum Green Algae, 4-day growth test

Discussion:

	Scottsdale	El Paso RO Concentrate
Feed Water Sodium (ppm)	235	2898
Feed Water Calcium (ppm)	80	717
Feed Sodium : Calcium Ratio	0.34	0.25
Product Water Sodium Target (ppm)	110	~464
Target Sodium Removal %	53%	84%

Selective Membrane Consumes More Power than Normal Membranes, Especially at High Conductivity Cuts

Conductivity cut

Conductivity cut

Insert a video on model runs and misc. screens

1 iPFD

▼ 1

Help

BPI Monte Carlo Simulation Have Many Applications for Desalination and Reuse

- Water System Resilience to Earthquake
- Hurricane Impact on SWRO Siting and Operation
- Microbial Risk Assessment and DPR Reliability
- Security and Vulnerability Assessment
- Pond sizing considering randomness in climate changes

6

Scottsdale Cost Estimates (2 Stage Ion Switcher vs. UF RO)

Capital (\$/gpd product flow) O&M (\$/kgal)

