

Update on Pilot Testing of the Advanced Water Purification Facility in El Paso, TX

Gilbert Trejo & Daniel Olson

Presented at the Multi-State Salinity Coalition Summit

January 28, 2016

Agenda

- 1. Project Background
- 2. Source Water Quality
- 3. Pilot Testing Results
 - Nitrogen
 - Pathogens
 - CECs
- 4. Lessons Learned

5. Summary and Next Steps

Background

- El Paso, TX
- Population: 600,000+
- Semi-arid climate typical of Southwest U.S.
- Rio Grande over-allocated in drought year
- Non-Potable Reuse since 1956
- Indirect Potable Reuse since 1985
- Now embarking on DPR

WORKING TOGETHER = WATERFOREVER

Sustainable water is totally doable. Working together, we can balance these resources to make sure we have water for today and tomorrow.

¹ Future resources will include importation from water rights landholdings and from other identified sources

© Arcadis 2015

200

Drought Year Without River Water

© Arcadis 2015

200

Advanced Water Purification Facility Concept

Riverside Irrigation Canal

Jonathan Rogers WTP

Roberto R. Bustamante WWTP

Proposed Location of AWPF

Rio Bosque Wetlands Park

Socorro Ponds Site (former wastewater ponds)

Lower Valley, El Paso, Texas

Project Status

- Feasibility assessment
- Concept development
- Pilot testing
- Preliminary design
- Detailed design
- Construction

Project Status

- ✓ Feasibility assessment
- Concept development
- Pilot testing
- Preliminary design
- Detailed design
- Construction

Source Water: Bustamante WWTP

AWPF Process Schematic

Pilot Tent Exterior

Pilot Tent Interior

Pilot Testing Overview

Membrane Filtration

- Pall MF
- Evoqua UF

Membrane Desalination

- Hydranautics ESPA2
- Dow NF90
- Hydranautics ESNA1

UV-Peroxide Advanced Oxidation

Granular Activated Carbon

- Catalytic Bituminous (Calgon)
- Catalytic Coconut Shell (Evoqua)
- Non-catalytic Bituminous (Calgon)

Pilot Testing Overview, cont'd.

- Pipe Loop Testing (distribution system pipe segments)
- Bench-Scale Testing
 - Coagulant Alternatives
 - 7-Day Simulated Distribution System (SDS) Testing with Free Chlorine to determine DBP potential
- Extensive Lab and Field Sampling
- Online Monitoring (Process Analyzers)
 - Nutrients (ChemScan)
 - Total Organic Carbon (GE)
 - Turbidity (Hach)
 - Free & Total Chlorine (Hach)
 - UV-254 Transmittance (RealTech)
 - Ozone Residual (ATI)
 - pH, ORP, Conductivity, Temperature at several locations

Pilot-Scale Online Monitoring

Pilot Plant Sampling Locations

Figure 3-3. Pilot Test Process Schematic

Source Water Quality

Parameter	Units	Average	Min.	Max.
Temperature	°C	27.4	17.5	33.5
рН	S.U.	6.8	6.6	7.1
Alkalinity (as CaCO ₃)	mg/L	99	29	244
Turbidity	NTU	3.3	1.0	30
Total Organic Carbon	mg/L	10.6	9.3	14.5
Total Dissolved Solids	mg/L	1,100	566	1,250
Ammonia (as N)	mg/L	3.2	0.3	35.0
Nitrate (as N)	mg/L	14.2	0.5	33.0
Nitrite (as N)	mg/L	0.6	0.07	5.9
Orthophosphate (as P)	mg/L	3.1	0.4	7.0
Sulfate	mg/L	238	97	543

Nitrogen

Imagine the result

ESPA2-LD (RO) – Nitrate

ESPA2-LD (RO) – Nitrite

© Arcadis 2015

NF-90 (Tight NF) – Nitrate

© Arcadis 2015

NF-90 (Tight NF) – Nitrite

ESNA1 (Loose NF) – Nitrate

© Arcadis 2015

ESNA1 (Loose NF) – Nitrite

© Arcadis 2015

Pathogens

Imagine the result

Unchlorinated Secondary Clarifier Effluent Pathogen Concentrations (2014-15)

Preliminary Assessment of Pathogen Removal Requirements for AWPF

	Crypto	Giardia	Viruses
Maximum concentration to date in unchlorinated secondary clarifier effluent	238 #/L	358 #/L	0.46 #/L
Purified water goal	< 3.0 x 10 ⁻⁵ #/L	< 7.0 x 10 ⁻⁶ #/L	< 2.2 x 10 ⁻⁷ #/L
Projected Inactivation / Removal Requirement	7	8	6.5

Pathogen Removal Requirements and Preliminary Results

	Anticipated Log Removal / Inactivation Credits					
Unit Process	Crypto	Giardia	Viruses			
Pretreatment	0	0	0			
MF/UF	4	4 4				
NF/RO	₀ Anticipa	OAnticipated removal requirements				
UV AOP	achieved through AWPF unit processes without WWTP chlorination					
GAC	0	0 0				
Cl ₂	0	3	4			
Total	8-12	11-15	8-13			
Projected Requirement	7	8	6.5			

Pathogen Removal through Treatment Train

Virus Concentrations are Non-Detect in UV AOP Effluent

Parameter	Units	6/10/15	7/8/15
Adenovirus	GC/L	Non-detect	Non-detect
Total Culturable Virus	MPN/L	< 0.0036	< 0.053
Enterovirus	GC/L	Non-detect	Non-detect
Norovirus GIA	GC/L	Non-detect	Non-detect
Norovirus GIB	GC/L	Non-detect	Non-detect
Norovirus GII	GC/L	Non-detect	Non-detect
Rotavirus	GC/L	Non-detect	Non-detect

- Viruses are non-detect in UV AOP effluent samples
- Chlorine disinfection for full-scale treatment train will provide additional pathogen barrier

Chemical Microconstituents

Imagine the result

CEC Testing

Testing for 97 chemicals of emerging concern (CECs):

- Source water
- Each NF/RO Permeate stream
- UV AOP Influent
- UV AOP Effluent
- Each GAC Effluent stream

Examples: caffeine, ibuprofen, estradiol, sucralose, triclosan, BPA, atrazine

UV AOP Pilot Testing Results

ESPA2 Testing:

- Six sampling events, total of 16 data sets
- 13 CECs detected in UV AOP influent
- 84 CECs not detected in membrane permeate
- Large majority were non-detect!

NF90 Testing:

Only 2 CECs detected in permeate sample!

Chemical Name	Units	Detection Limit	UV AOP Influent	UV AOP Effluent	% Removal
4-nonylphenol	ng/L	100	660	230	65%
4-tert-Octylphenol	ng/L	50	400	120	70%
Acesulfame-K	ng/L	20	150	ND	-
Atenolol	ng/L	5	8	ND	-
Carbamazepine	ng/L	5	8.9	ND	-
DEET	ng/L	10	13	ND	-
Diclofenac	ng/L	5	6.2	ND	-
lohexal	ng/L	10	28	ND	-
lopromide	ng/L	5	6.9	ND	-
Sucralose	ng/L	100	1400	220	84%
TCEP	ng/L	10	19	ND	-
Triclocarban	ng/L	5	33	ND	-
Triclosan	ng/L	10	55	ND	-

© Arcadis 2015

ESPA2 Permeate through UV AOP

Lessons Learned

- Chloramine residual improves MF/UF performance
- Sample conditioning important for reliable monitoring
- Added benefits of GAC for peroxide quenching (AOP)
- Source water quality led to higher-than-expected flux for membrane filtration units
- NOx effectively removed with NF/RO membranes

Summary & Next Steps

- AWPF pilot treatment train meets primary and secondary drinking water standards
- Nitrogen removal with NF/RO membranes
- CECs very effectively removed by NF/RO membranes
- Near-complete removal of organics with UV-AOP/GAC
- Next Steps:
 - Wrap up pilot testing and permit project for design
 - Continue source water quality monitoring (24 months)
 - Design and construct full-scale AWPF

Acknowledgements

- El Paso Water Utilities:
 - John Balliew
 - Gilbert Trejo
 - Fernie Rico
 - Carlos Dominguez
 - Aide Zamarron
- ARCADIS
 - Brent Alspach
 - James Collins
 - Caroline Russell
 - Chelsea Francis
 - George Maseeh

