Exceptional service in the national interest

Water Challenges and Desalination Looking Back and Looking Forward a Decade

Multi-State Salinity Coalition January 2016

Mike Hightower Distinguished Member of the Technical Staff Sandia National Laboratories <u>mmhight@sandia.gov</u> 505-844-5499

Desalination Capacity Growth Trends Circa 2005

Growing Limitations on Fresh Surface and Ground Water Availability

(Based on USGS WSP-2250 1984 and Alley 2007)

 Many major ground water aquifers seeing reductions in water quality and yield

- Little increase in surface water storage capacity since 1980
- Concerns over climate impacts on surface water supplies

(Shannon 2007)

Sandia National Laboratories

Expected State Water Shortages Increasing

GAO 2003

Water stress is increasing nationally

4

Desalination vs. Fresh Water Costs and Growth in U.S. Desalination Plants

Years

Brackish water desalination and waste water reuse increasingly cost competitive with other water solutions

Growing Use of Non-traditional Water Resources

(From EPA 2004, Water Reuse 2007, Mickley 2003)

(Einfeld 2007)

Desalination growth - 10%/year, Waste water reuse - 15%/year

U.S. Desalination Research Efforts - 2005

- Desalting Handbook for Planners 2003
 Desalination Technology Roadmaps
 - 2002, 2005, 2007 new technologies
- NRC National Desalination Perspective, 2008
 - Recommended \$20M/yr U.S. research budget, etc.
- Wide-area, and wide-spread droughts
 - Multi-year droughts in West, Texas, SE, NE, and NW
- USGS not monitoring desalination
 - Desalination use data difficult to verify and to identify and estimate trends
- BOR upgrade of Yuma Desalination Plant
- BOR desalination research budget of \$1-2M/yr
- BOR Construction of Brackish Groundwater National Desalination Research Facility

Desalination Plant Trends - 2005

- Large seawater RO desalination plants being constructed and planned*
 - Tampa Bay -25 MGD
 - Perth 35 MGD
 - Australia* 5 additional plants of 30- 80 MGD
 - Ashkelon 90 MGD
 - Israel* 4 additional plants of 100 MGD
 - Carlsbad 50 MGD
 - California* 4 additional plants of 30-50MGD
- Large inland brackish desalination plants were being considered
 - El Paso 30 MGD
 - Phoenix, Tucson, Las Vegas* 50 MGD

Ashkelon

U.S. Water History Based on Tree Ring Data

Univ. of Arizona - Tree Ring Research Lab - 50 year averages

The southern U.S. and the mid-latitudes are in the 100th year of a 300 year arid cycle - not a drought

Climate Changes will Impact Temperatures, Precipitation, Evapotranspiration, and Runoff

Nat. Geo. April 2009 from IPCC

Mid-latitude population and grain belts will be strongly affected

Projected Rio Grande Flows through 2100

"Results are not predictions, but rather a starting point for dialogue and increased awareness of potential impacts of climate change." *Roach et al.*

Global Desalination Trends - 2015

Global desal plant increase

- 13,000 to 17,000 plants since ~2005
- From 60 M m³/day to 80 Mm³/day
- Israel has added 4 new large plants
 - Capacity to 600 Mgal/day
- Australia built 7 large plants
 - 2 operating in Perth 100 Mgal/day
 - 5 mothballed

Increased desalination research facilities

 Including National Center of Excellence in Desalination in Perth

Perth Binningup Plant 60MGD 2013

National Center of Excellence in Desalination – Murdoch University Perth Australia 2010

U.S. Desalination Trends - 2015

- Carlsbad seawater desalination plant opens after 10 years of permitting
- Improved understanding of available traditional and non-traditional water resources in the west
- By 2050, 40% of Texas drinking water supply will be from nontraditional water resources
- New federal desal research being proposed
 - DOE Energy for Water efforts
 - White House Water Summit
- Expanding research on brackish desalination and waste water reuse

Carlsbad Desal Plant started 2005 completed 2015

Western Water Availability Assessment

Unappropriated Surface Water Metric

Potable Groundwater Metric

Appropriated Surface Water Metric

Wastewater Metric

Brackish Groundwater Metric

Change in Demand, Present - 2030

14

The Energy Intensity of Water Supplies varies greatly across California

Energy Requirements of Various Water Resource Options

Water Supply Options	Energy Demand (kWhr/kgal)
Fresh Water Importation	10-18
(100-300 miles)	
Seawater Desalination w/Reverse Osmosis	12-20
Brackish Groundwater Desalination	
Reverse Osmosis Treatment	7-9
Pumping and concentrate management	1-3
Total	8-12
Aquifer Storage and Recovery	
Pre-treatment (as needed)	3-4
Post-treatment (as needed)	3-4
Pumping	2-3
Total	5-11

Recent Energy Water Program Plans

Technology RDD&D

- Thermoelectric Cooling Improvements
- Waste Heat Recovery in Energy Systems •
- **Process Water Use Efficiency and Quality**
- Traditional and Non-traditional Hydropower Improvements •
- Alternatives to Fresh Water Use in Energy Production Using **Advanced Materials and Processes**
- **Desalination Improvements**
- Net-Zero Municipal Wastewater Treatment
- Sensors •
- Deployment
- Analysis and Modeling
 - Integrated Analytical Platforms
 - Decision Support Tools
- **Policy Framework**
- Stakeholder Engagement
- International Diplomacy

The

Nexus:

Water-Energy

Challenges and

Opportunities

Laminar GO desalination membranes are a potentially disruptive technology

Intrinsic nanoscale properties of laminar GO drive water permeation and are optimum for desalination

Intensity (AU)

500

Détente in the Water-Energy Nexus via Bio-inspired Ion-Selective Membranes

<u>Problem</u>: Cheap clean water is critical globally, but current water desalination technology is costly.

- Energy water food interdependence
- Clean water essential to coal-fired electricity, biofuels, agriculture
- 2.4 billion gallons/day water produced in extraction (oil, gas, mining), but limited reuse due to desal. cost
- Unprecedented drought risk in US & worldwide (Science, Feb. '15), causes crises (food/energy/health) & international tension
- Reverse osmosis and distillation are costly due to high pressures (P), temperatures (T), membrane fouling

<u>Innovative Solution</u>: Develop advanced, low-cost electrodialysis (ED) membranes inspired by newly discovered cellular proto-types to clean salty waters cheaply.

- Salty waters abundant: brackish, oil/gas, mining
- Costly to remove multiple ions: Na⁺, Ca²⁺, Cl⁻, HCO₃⁻
- ED promising due to fouling resistance & low P /T, but membranes require higher multi-ion permeability to lower cost
- Use biomembrane pores (ChR, CFTR) with ~10x higher, multiion transport for inspiration:
 - Apply high-resolution theory, experiment, fabrication
 - Identify key structural components for optimal binding & transport of multiple ions
 - Translate biodesigns to robust, synthetic membranes
- <u>Risk \rightarrow Mitigation</u>: protein stability \rightarrow ChR stable already in one matrix; polymer stability \rightarrow polypeptide/polymer already deposited in thin films; commercially viable \rightarrow test in smallscale electrodialysis plants at UT

<u>Team Expertise & Capabilities:</u>

- Rempe (PI) structure vs function of ion-pore interactions via quantum & molecular simulations
- Bachand & Hibbs –protein & polymer synthesis

UNM/UT – fabrication & `father' of ED membranes

Why Sandia/Broad Impact:

- Team's expertise & recent successes in quantifying ionmatrix interactions & fabricating ultra-thin peptide-lined membranes (*PNAS*, '13; *JACS*, '14)
- Leverages SNL investments in Part 1: synergistic, but distinct water-selective RO membranes, currently in transition by industry (R&D 100 Award, 2011)
- Timely: newly discovered ion-selective protein prototype (ChR); produce high-performing resilient membrane & understand catalytic control of bio/abiotic systems (Research Challenges)
- Potential for licensing (Bettergy, Danfoss)
- Success positions team to win funding in DOE's crosscut Water/Energy Nexus focus on water treatment technology; WETT; EPA; DOI Reclamation; Navy

