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Desalination Capacity 

Growth Trends Circa 2005

(National Research Council, Desalination 2008)
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Growing Limitations on Fresh Surface                   
and Ground Water Availability

 Little increase in surface water 
storage capacity since 1980

 Concerns over climate impacts 
on surface water supplies

 Many major ground water 
aquifers seeing reductions in 
water quality and yield  

( Based on USGS WSP-2250 1984 and Alley 2007)

(Shannon 2007)
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Expected State Water Shortages Increasing
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Water stress is increasing nationally
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Desalination vs. Fresh Water Costs
and Growth in U.S. Desalination Plants
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Brackish water desalination and waste water reuse
increasingly cost competitive with other water solutions
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Growing Use of Non-traditional Water Resources 
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Desalination growth - 10%/year, 
Waste water reuse - 15%/year
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U.S. Desalination Research Efforts - 2005

 Desalting Handbook for Planners - 2003
 Desalination Technology Roadmaps –

• 2002, 2005, 2007 – new technologies

 NRC National Desalination Perspective, 2008
• Recommended $20M/yr U.S. research budget, etc.

 Wide-area, and wide-spread droughts
• Multi-year droughts in West, Texas, SE, NE, and NW

 USGS not monitoring desalination
• Desalination use data difficult to verify and to identify 

and estimate trends 

 BOR upgrade of Yuma Desalination Plant
 BOR desalination research budget of $1-2M/yr
 BOR Construction of Brackish Groundwater 

National Desalination Research Facility
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Desalination Plant Trends - 2005

 Large seawater RO desalination plants being 
constructed and planned*
• Tampa Bay -25 MGD

• Perth – 35 MGD

• Australia* – 5 additional plants of 30- 80 MGD

• Ashkelon – 90 MGD

• Israel* – 4 additional plants of 100 MGD

• Carlsbad – 50 MGD

• California* - 4 additional plants of 30-50MGD 

 Large inland brackish desalination plants 
were being considered
• El Paso – 30 MGD

• Phoenix, Tucson, Las Vegas* – 50 MGD

Tampa

El Paso

Perth

Ashkelon
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U.S. Water History Based on Tree Ring Data
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The southern U.S. and the mid-latitudes are in the 100th year 
of a 300 year arid cycle - not a drought 

Univ. of Arizona – Tree Ring Research Lab – 50 year averages
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abandonment
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Next 
Abandonment?
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Climate Changes will  Impact Temperatures, 
Precipitation, Evapotranspiration, and Runoff   

Mid-latitude population and grain belts will be strongly affected
Nat. Geo. April 2009 from IPCC
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“Results  are not predictions, but rather a starting point for dialogue 
and increased awareness of potential impacts of climate change.”

Roach et al.

Projected Rio Grande Flows through 2100
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Global Desalination Trends - 2015

 Global desal plant increase 

• 13,000 to 17,000 plants since ~2005

• From 60 M m3/day to 80 Mm3/day

 Israel has added 4 new large plants 
• Capacity to 600 Mgal/day

 Australia built  7 large plants 
• 2 operating in Perth – 100 Mgal/day
• 5 mothballed

 Increased desalination research 
facilities
• Including National Center of Excellence in 

Desalination in Perth

Perth Binningup Plant 60MGD 2013

National Center of Excellence in Desalination –
Murdoch University Perth Australia 2010
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U.S. Desalination Trends - 2015

 Carlsbad seawater desalination plant 
opens after 10 years of permitting

 Improved understanding of available 
traditional and non-traditional water 
resources in the west

 By 2050, 40% of Texas drinking water 
supply will be from nontraditional 
water resources

 New federal desal research being 
proposed
• DOE Energy for Water efforts
• White House Water Summit

 Expanding research on brackish 
desalination and waste                       
water reuse

Carlsbad Desal Plant started 2005 completed 2015
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Western Water Availability Assessment
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The Energy Intensity of Water Supplies varies greatly across 
California

Source: California Water Plan            
Update 2013
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Energy Requirements of Various 
Water Resource Options

Water Supply Options Energy Demand

(kWhr/kgal)

Fresh Water Importation

(100-300 miles)

10-18

Seawater Desalination w/Reverse Osmosis 12-20

Brackish Groundwater Desalination

Reverse Osmosis Treatment

Pumping and concentrate management

Total

7-9

1-3

8-12

Aquifer Storage and Recovery

Pre-treatment  (as needed)

Post-treatment (as needed)

Pumping

Total

3-4

3-4

2-3

5-11
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Recent Energy Water Program Plans

 Technology RDD&D 
• Thermoelectric Cooling Improvements

• Waste Heat Recovery in Energy Systems

• Process Water Use Efficiency and Quality 

• Traditional and Non-traditional Hydropower Improvements

• Alternatives to Fresh Water Use in Energy Production Using 
Advanced Materials and Processes 

• Desalination Improvements

• Net-Zero Municipal Wastewater Treatment

• Sensors 

• Deployment 

 Analysis and Modeling 
• Integrated Analytical Platforms 

• Decision Support Tools

 Policy Framework

 Stakeholder Engagement

 International Diplomacy 
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Laminar GO desalination membranes are 
a potentially disruptive technology

18

47-mm 

Thin-slit permeation pathway defined by oxygen moiety “nanopillars”

Intrinsic nanoscale properties of laminar GO drive water permeation and are 
optimum for desalination

SNL GO/polyester 
membrane

D G 2D

GO structure is robust to 1-ppm, 
one month free chlorine 
exposure.

GO is chemically tolerant to many 
hydrocarbons (eg: toluene)
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