

January 27-29, 2016 Nevada, USA

Qatar Mega Water Reuse Project, IDRIS Programme Solution in the Middle East

Val S. Frenkel Ph.D., P.E., D.WRE

Acknowledgement

Bill Van Wagenen

قطــر تستحــق الأفضــل Qatar Deserves The Best

John Joseph Drummie

Neil A. Wilson

Terry L. Krause, PE, BCEE

Chris Drew

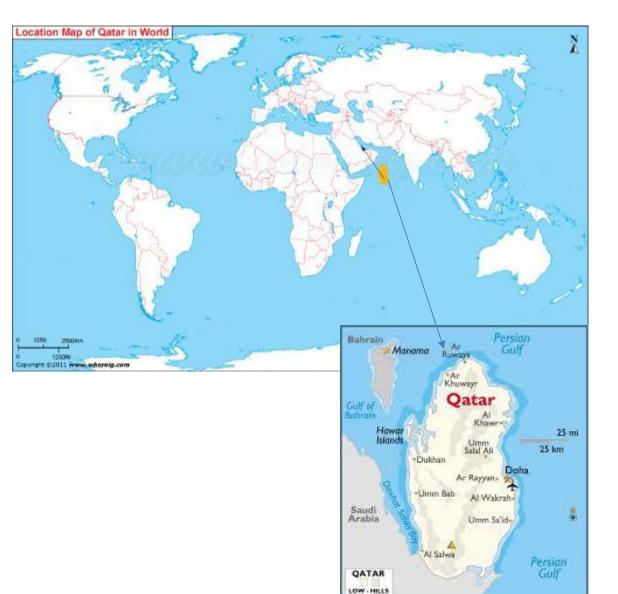
Safety First

Presentation Overview

- Public Works Authority Overview (ASHGHAL), Qatar
- IDRIS (Inner Doha Re-sewerage Implementation Strategy) Programme Drivers
- Expected Programme Outcomes
- The IDRIS Concept
- Recommended IDRIS Scheme
- Component Details
- On-Going Advanced Activities
- Key Implementation Considerations
- Procurement Considerations
- Summary
- Questions

Presentation Overview

- Qatar
- Public Works Authority Overview (ASHGHAL)
- IDRIS (Inner Doha Re-sewerage Implementation Strategy) Programme Drivers
- IDRIS Programme Drivers
- Expected Programme Outcomes
- The IDRIS Concept
- Recommended IDRIS Scheme
- Component Details
- IDRIS Programme Packages
- Schedule
- Procurement Considerations
- TSE Treated Sewer Effluent
- Innovative Technologies
- Summary
- Questions



WIKIPEDIA

Qatar

Country in the Middle East Qatar is a peninsular country whose terrain comprises arid desert and a long Persian Gulf shoreline of beaches and dunes.

Capital: Doha Dialing code: +974 ISO code: QAT Currency: Qatari riyal Population: 2.169 million (2013)

PUBLIC WORKS AUTHORITY (ASHGHAL)

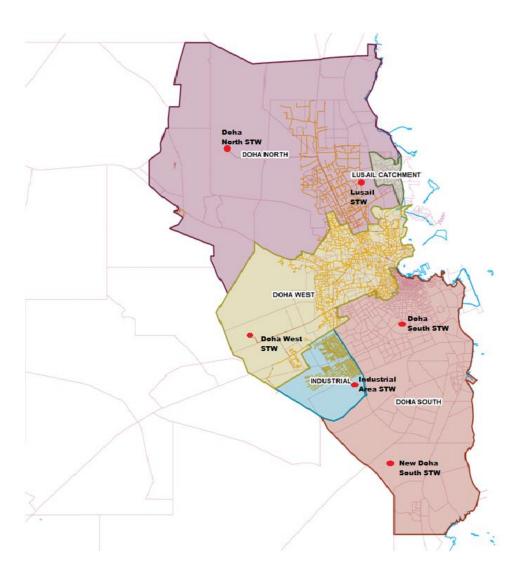
- Government organisation formed in January 2004 by Emiri Decree No.1
- 1500 employees
- Remit of infrastructure delivery and public amenities
 - \circ Roads
 - Drainage
 - Municipal Buildings
- Planned investment of over \$20 billion in next 5 years
- PWA Corporate Strategy 2011-2016 in complete alignment with the Qatar National Vision 2030

Ashghal's Strategy

MISSION

أكريك محمد مستحدق التمصيل

Qatar Deserves The Best


Deliver and manage state-of-the-art, sustainable world class buildings and infrastructure that fulfill the Qatar National Vision 2030⁻

VISION

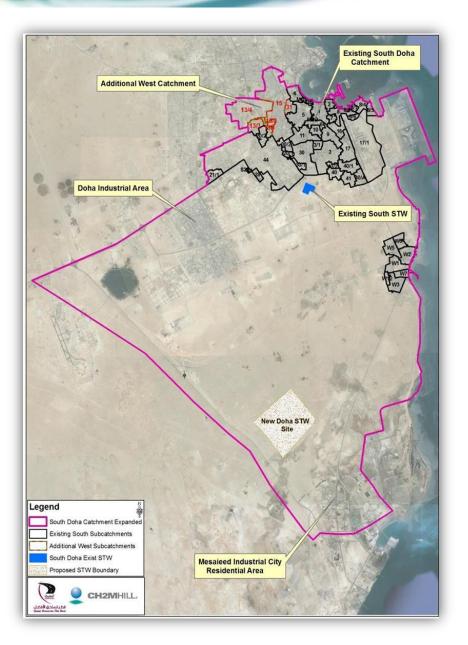
Ashghal will be a dynamic, responsive and customer centric organization that creates shared value for all stakeholders through outsourcing and partnership with the worlds best.

Themes		
Dynamic & Respon	nsive	We Lead
Customer Centric		We Care ⁻
Outsourcing & Del	ivery	We Deliver

Existing Doha Drainage Infrastructure

- Main drainage catchments:
 - Doha South
 - Doha West
 - Doha North
- Two smaller subcatchments:
 - Lusail
 - Doha Industrial Area
- Three main operational STWs:
 - Doha West STW
 - Doha South STW
 - Industrial Area STW

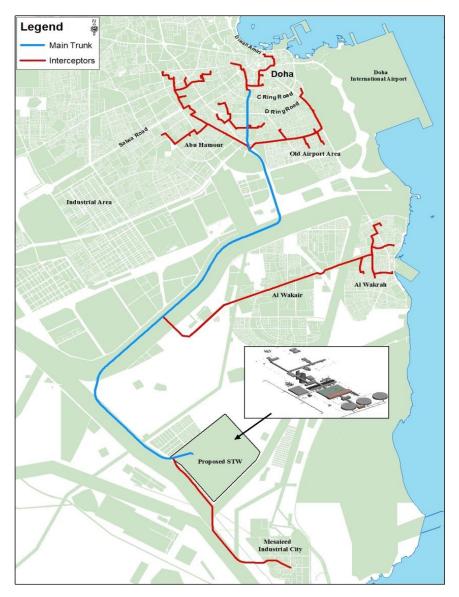
IDRIS Programme Drivers


- Existing foul sewerage network hydraulically overloaded – results in street flooding
- Existing key assets under capacity & portions reaching end of useful life
- Extensive on-going & planned development to occur within South Catchment - will only make current situation worse


Expected Programme Outcomes

- Eliminate serious public health issue – foul sewage flooding in over 20 locations in central Doha
- Accommodate economic & planned growth for over an additional million people
- Provide 50 year sewerage solution for Doha's largest catchment
- Eliminate over 30 aging pump stations under IDRIS – nearly 60 total under other ASHGHAL programmes/projects
- Produce up to 500,000 m³/day high quality TSE (reuse water) by 2030

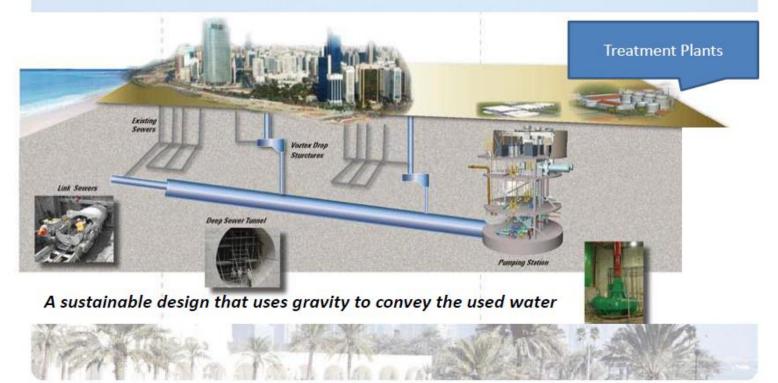
Implemented in a safe & sustainable manner using innovative and best-in-class approaches that will allow Ashghal to be considered for global recognition



Concept - Implement deep tunnel gravity sewerage system

- Focus is on Doha South Catchment
- Design horizon is 50 years anticipated that facilities will have longer life
- Eliminate as many existing foul sewage pump stations as possible

Recommended IDRIS Scheme



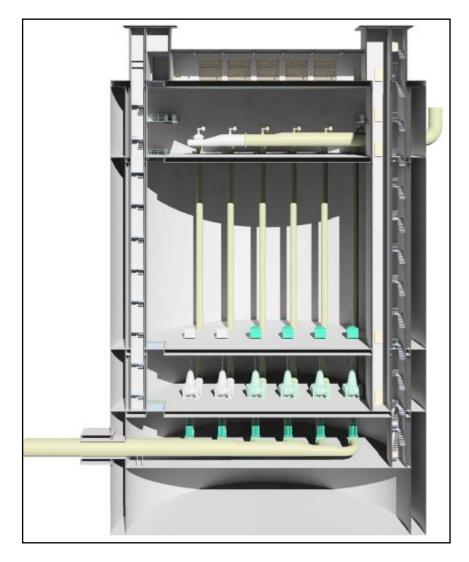
- Conveyance System:
 - Lateral interceptors
 - Main trunk sewer
- Terminal Pump Station
- New Doha South STW
- Treated Sewage Effluent (TSE) return system
- Decommissioning existing facilities (PSs & STW)

Deep Tunnel Gravity Sewer Scheme

How it works

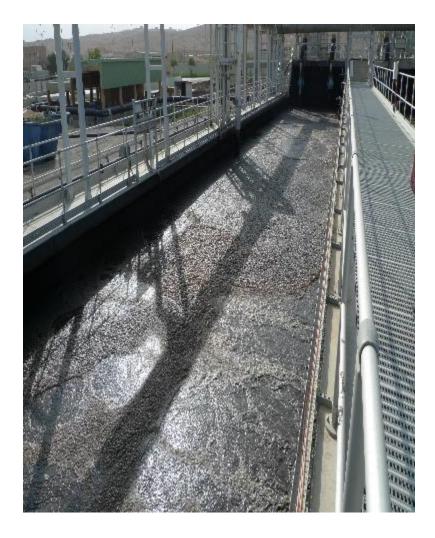
Component Details - Interceptors

- Approximate length of 73 km
- Inside diameters range from 400 to 2400 mm
- Installed depths range from 4m to 40m (average 23m)
- Installed by micro-tunnelling techniques – requiring special jacking pipe
- Divided into three main areas:
 - Central Doha
 - Al-Wakra
 - Mesaieed Industrial City



Component Details – Main Trunk

- Approximate length 40 km
- Inside diameters range from 3000-4500 mm
- Installed depths range from 24m to 59m (average 43m)
- Installed by bored tunnelling techniques – structural lining plus secondary corrosion protection lining
- Divided into three main segments:
 - North Branches
 - Central
 - South



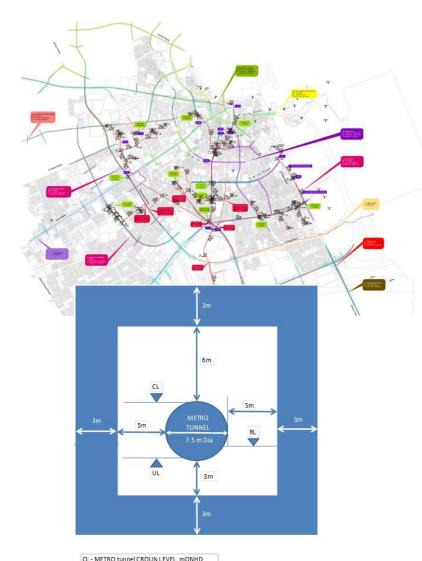
Component Details – Terminal Pump Station

- Initial structure for mid-term capacity needs
- Provisions for installation of adjacent future station to accommodate ultimate flow
- Station depth 70 m
- Pumping capacity $12 \text{ m}^3/\text{sec}$
- Associated features:
 - Up front screening and flow splitting structure
 - Fully divided station for reliability and redundancy
 - Odour extraction & treatment system (station and partial trunk sewer)
 - Emergency power generation system

Component Details – New Doha South STW

- Initial capacity of 500,000 m³/day; site configured for ultimate capacity of 2-3 times initial capacity
- Required treatment process:
 - Preliminary (flow measurement, screening & grit removal)
 - Primary clarification
 - Secondary/advanced treatment (BOD, nutrient removal & high level suspended solids reduction)
 - Disinfection
 - Sludge processing (thickening, stabilsation and dewatering)
 - Possible further sludge processing required (subject to Master Plan outcome)

Component Details – TSE Return System


- Planned facilities:
 - TSE pump station firm pumping capacity of 700,000 m³/day (part of New Doha South STW)
 - Return pipelines to:
 - West Qatar Farms
 - Doha West & existing Doha South STWs
 - TSE distribution network for Mesaieed Industrial City & Al-Wakra
 - Additional TSE storage at main distribution centres
 - Final requirements pending adoption of Qatar Integrated Drainage Master Plan
- Near surface open cut construction techniques

Advanced Activities - Enabling Works

- Enabling Works initiated:
 - Geotechnical investigations:
 - GSI-01 MTS & STW Boreholes
 - GSI-02 Geophysical Investigations
 - GSI-03 LIS & TSE Boreholes and Environmental Testing
 - Environmental Consultant procurement – prepare two EIAs
 - Topographic surveys

Advanced Activities - Stakeholder Engagement

RL - METRO tunnel RAIL LEVEL, mQNHD UL - METRO UNDERSIDE LEVEL, mQNHD • Key stakeholders:

- MMUP Ministry of Municipality and Urban Planning
- MoE Ministry of Environment
- Qatar Rail Company
- KAHRAMAA- Qatar General Electricity & Water & Company
- Qatar Petroleum
- World Cup 2022 Supreme Committee
- Critical interface issue avoiding potential clashes:
 - Expressways
 - Metro
 - Abu Hamour surface water tunnel
 - MMUP concept plans

Programme Baseline Schedule

Activity	2012	2013	2014	2015	2016	2017	2018	2019	2020
Programme Management									
French II. Church									
Feasibility Study									
Design & Tender		•							
Development									
Tendering & Award									
Contract Implementation									
Defects Liability & Contract									
Close-Out									
Operations Commence								*	

Programme Implementation Considerations

- Packaging strategy:
 - 8 construction packages
- Delivery approach:
 - Design/Build Interceptors, Main Trunk & TSE Return System
 - Design/Build/Operate TPS & STW
 - Design/Bid/Build PS
 Decommissioning
- Tender documents will be based on a Reference Design

Overall Procurement Process

Looking for best international companies with culture aligned with Ashghal Vision

- Early market engagement
- Prequalification (by construction package)
- Tendering (by specific implementation contract)
- Contract awards

QIDMP TSE Standards

These become the IDRIS Guaranteed Performance Levels

Current and Proposed Effluent Discharge Standards

Parameter	Units	Ashghal Current Standard	QIDMP Proposed (90%ile)	QIDMP Proposed (100%ile)
TSS	mg/L	5	5	10
BOD5	mg/L	5	5	10
COD	mg/L	50	50	100
рН		6-9	6-9	5.5-9.5
Ammonia	mg-N/L	1	1	5
Total Nitrogen	mg-N/L	10	5	10
Total Phosphorous	mg-P/L	NA	1	3
Dissolved Oxygen	mg/L	2	2	NA
Free Chlorine	mg/L	0.5-1.0	0.5-1.0	2.0
Turbidity	NTU	2	2	5
Total Dissolved Solids	mg/L	<2,000	<500	1,500
Faecal Coliform	MPN/100 mL	None	None	10
Intestinal Nematodes (Helminths)	Count/L	<1	ND	5
Protozoa (Giardia)	Count/40L	<1	<1	5
Enteric Viruses	Count/40L	<1	<1	10

Comparison of TSE Criteria for "Unrestricted" Reuse

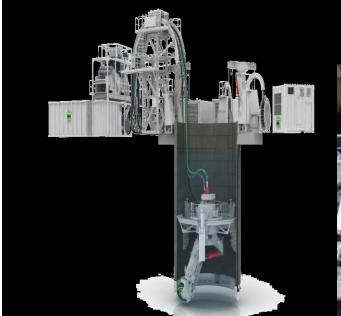
Parameter	Units	QIDMP Proposed (90%ile/100%ile)	IDRIS Contract TPS/STW-01 (90%ile/max)	Queensland, Australia Class A+	Australia National Standards	US EPA Guidelines for Water Reuse (2012)	California Title 22
Treatment Level					tertiary with pathogen reduction	secondary, filtration, disinfection	oxidized, filtered, disinfected
TSS	mg/L	5/10	5/10	5		5	
BOD5	mg/L	5/10	5/10	10		10	
COD	mg/L	50/100	50/75				
рН		6-9	6-9	6-8.5	6-8.5	6-9	
Ammonia	mg-N/L	1/5	1/2				
Total Nitrogen	mg-N/L	5/10	10/20				
Total Phosphorous	mg-P/L	1/3	1/2				
Dissolved Oxygen	mg/L	2/NA	2/NA				
Free Chlorine	mg/L	0.5-1.0/2.0	1.0/2.0	0.2-0.5	1.0	0.5 - 1.0	
Turbidity	NTU	2/5	0.2/0.5	<2/5	<2/<5	2/5	0.2/0.5
Total Coliform	MPN/100 mL						2.2/23/240
Faecal Coliform	MPN/100 mL	ND/10	ND/14	<10 (E. Coli)	<10 (E. Coli)	ND/14	
Intestinal Nematodes (Helminths)	Count/L	ND/5	ND/<1	5 log removal			
Protozoa (Giardia)	Count/40L	<1/5	ND/<1	5 log removal			
Enteric Viruses	Count/40L	<1/10	ND/<1	6 log removal			5 log removal

QIDMP Further Disinfection Requirements

Table 11.34 Adopted Log Removal Through Various Treatment Process

	Indicative Log Reductions						
Treatment Process	Bacteria	Viruses	Protozoa	Helminths			
Secondary (BNR)	0.5	0.5	0.5	0.5			
Media Filtration	0	0	0	1.0			
Ultrafiltration	3.5	2.5	4.0	4.0			
UV	3.0	1.5	1.3	0			
Chlorination	2.0	4.0	0	0			
Total (w/o UV)	6.0	7.0	4.5	5.5			
Total (w/UV)	9.0	8.5	5.8	5.5			
Required Removal	5.0	6.5	5.0	5.0			

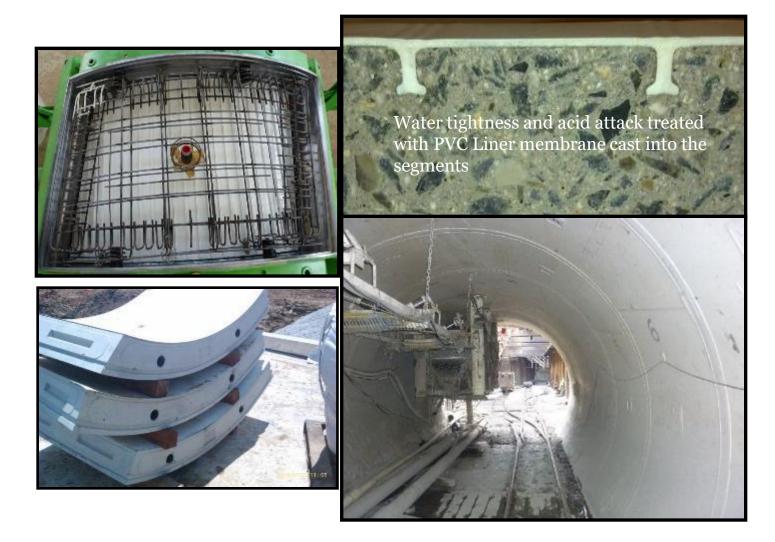
(1) Standard log removal for Class A+ recycled water (Queensland Department of Natural Resources and Water)

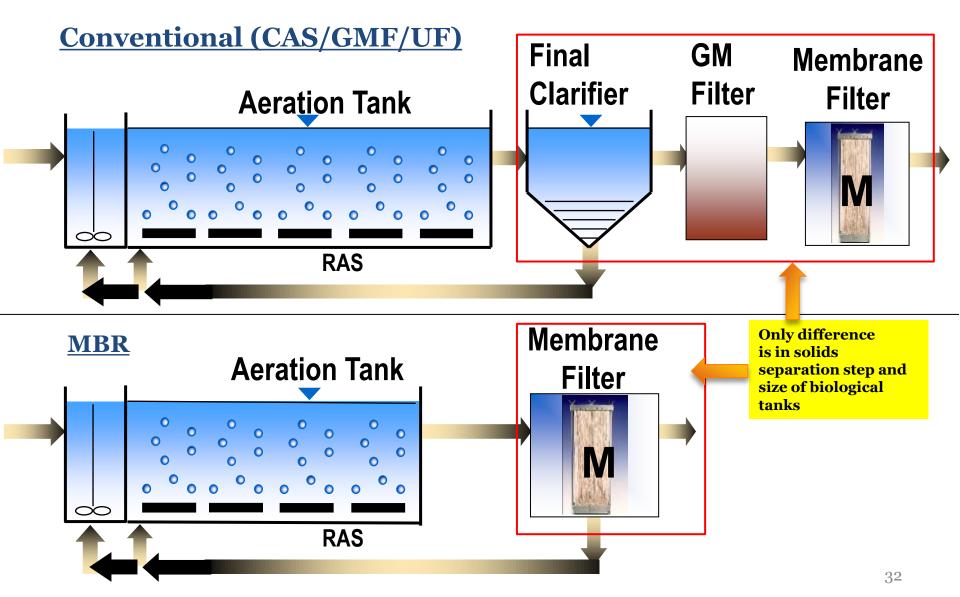

Indicative Log Reductions of Enteric Pathogens

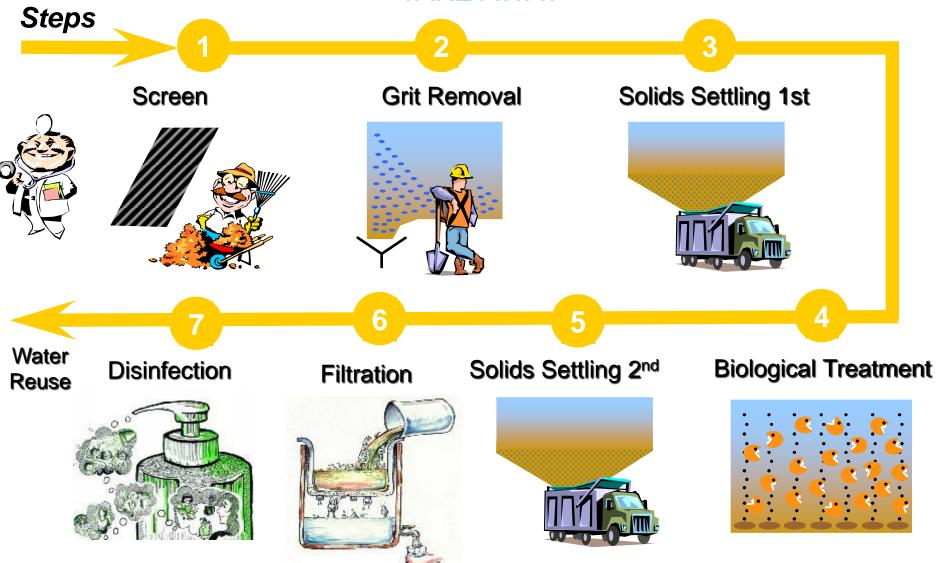
	Indicative Log Reductions (1)							
Treatment	E.coli	Bacterial Pathogens	Viruses	Phage	Giardia	Crypto	Clostridium perfringens	Helminths
Primary Treatment	0-0.5	0-0.5	0-0.1	N/A	0.5-1.0	0-0.5	0-0.5	0-2.0
Secondary Treatment	1.0-3.0	1.0-3.0	0-2.0	0.5-2.5	0.5-1.5	0.5-1.0	0.5-1.0	0-2.0
Dual Media Filtration	0-1.0	0-1.0	0.5-3.0	1.0-4.0	1.0-3.0	1.5-2.5	0-1.0	2.0-3.0
Membrane Filtration	3.5 ->6.0	3.5->6.0	2.5->6.0	3.0- >6.0	>6.0	>6.0	>6.0	>3.0
Lagoon Storage	1.0-5.0	1.0-5.0	1.0-4.0	1.0-4.0	3.0-4.0	1.0-3.5	N/A	1.5->3.0
Chlorination	2.0-6.0	2.0-6.0	1.0-3.0	0-2.5	0.5-1.5	0-0.5	1.0-2.0	0-1.0
Ozonation	2.0-6.0	2.0-6.0	3.0-6.0	2.0-6.0	N/A	N/A	0-0.5	N/A
UV Light	2.0->4.0	2.0->4.0	>1.0 adenovirus >3.0 enterovirus, hepatitis A	3.0-6.0	>3.0	>3.0	N/A	N/A
Wetlands – surface flow	1.5-2.5	1.0	N/A	1.5-2.0	0.5-1.5	0.5-1.0	1.5	0-2.0
Wetlands – subsurface flow	0.5-3.0	1.0-3.0	N/A	1.5-2.0	1.5-2.0	0.5-1.0	1.0-3.0	N/A

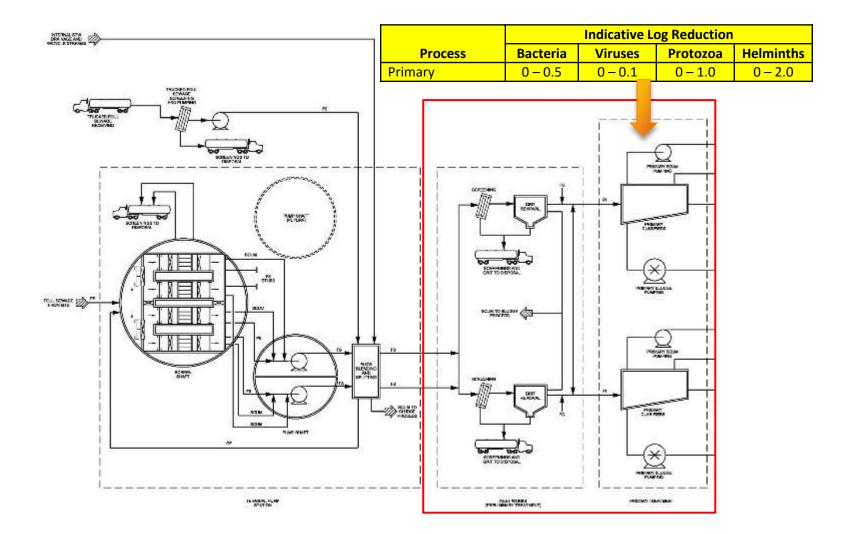
(1) Source: Draft Australian National Guidelines for Water Recycling (NRMMC & EPHC 2005).

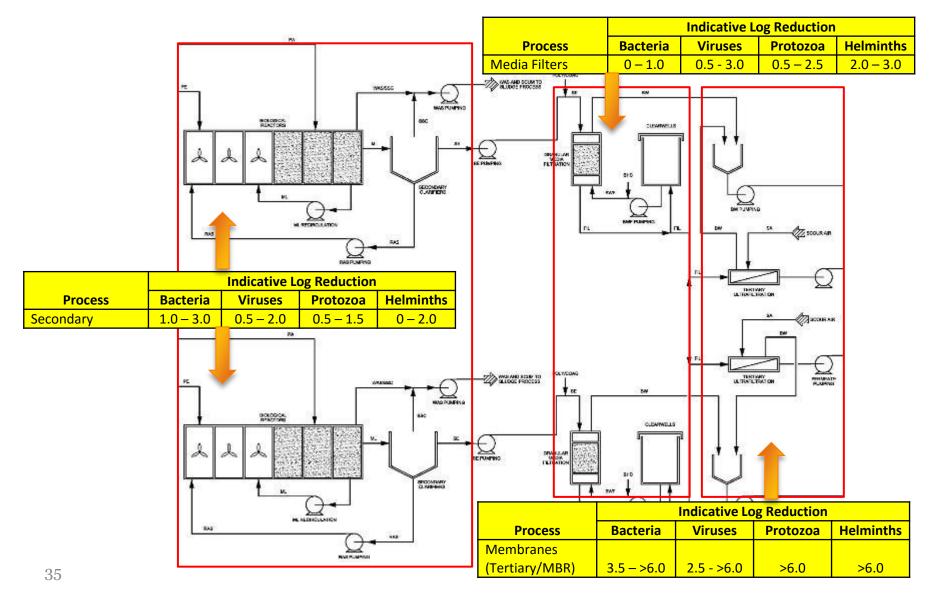
Innovative Technologies Introduced

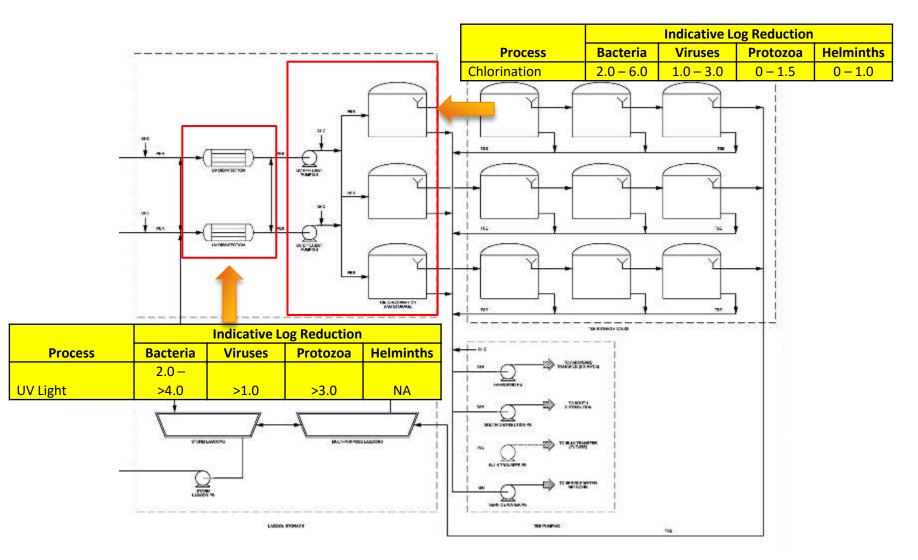

Vertical Shaft Sinking Machine VSM


Max. 50m depth Ø ID 4500, OD 5200


Innovative Technologies Introduced Integrated HDPE Liner Segments


Innovative Technologies Introduced


Wastewater Treatment Plant Summary TAKE AWAY

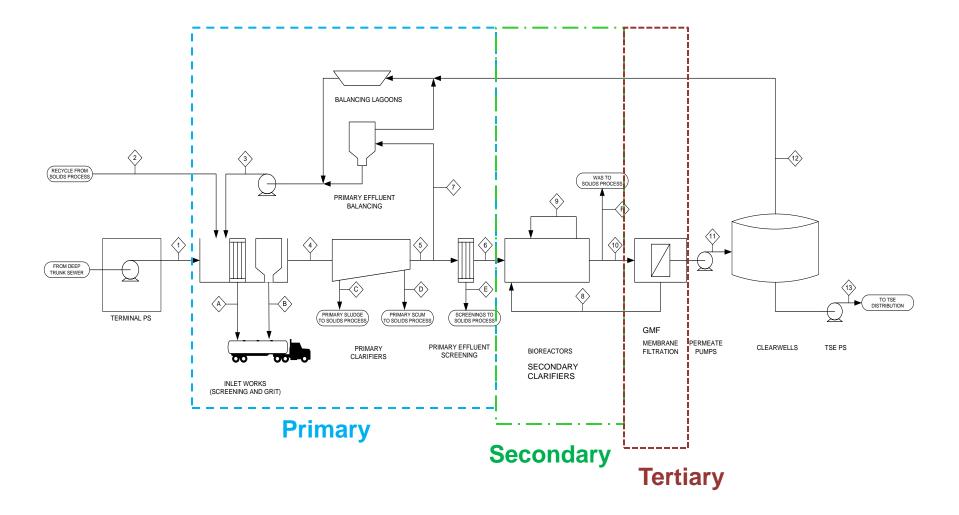

Treatment – Preliminary/Primary

Treatment– Secondary/Tertiary

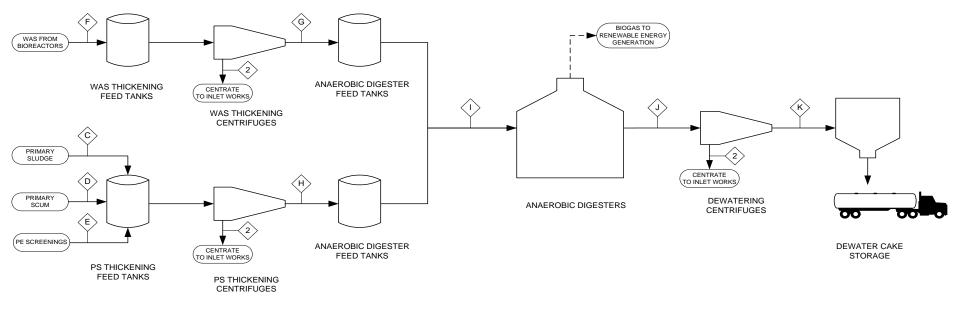
Treatment– Disinfection

Summary

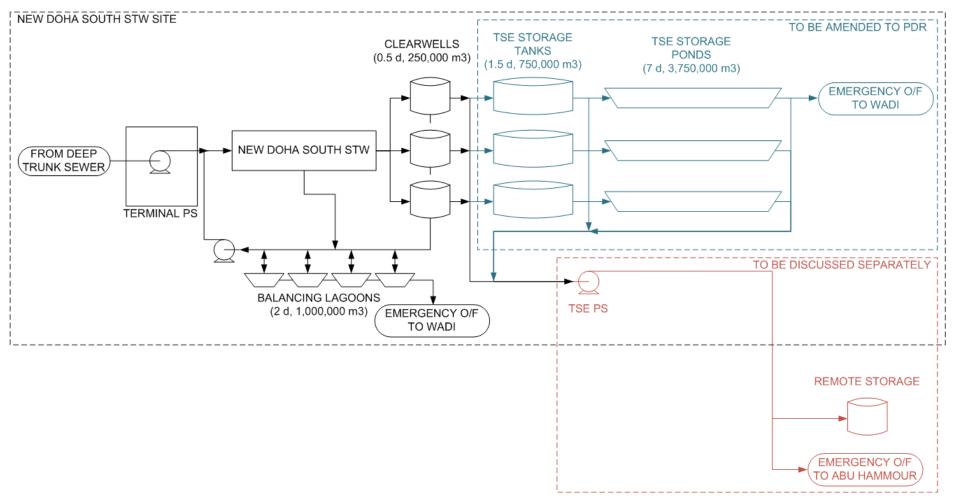
- Accept MBR as a proven, equivalent treatment process
- Note that strong incentives exist for the DBOM Contractor to select the best, proven technology for the long-term
- Allow Tender Alternatives, as currently planned
- Note that other viable alternatives exist, e.g. Sequencing Batch Reactor (SBR)
- PWA Senior Managers to decide based on Cost-Benefit
- Let the Market help us decide!


Val S. Frenkel, Ph.D., P.E., D.WRE.

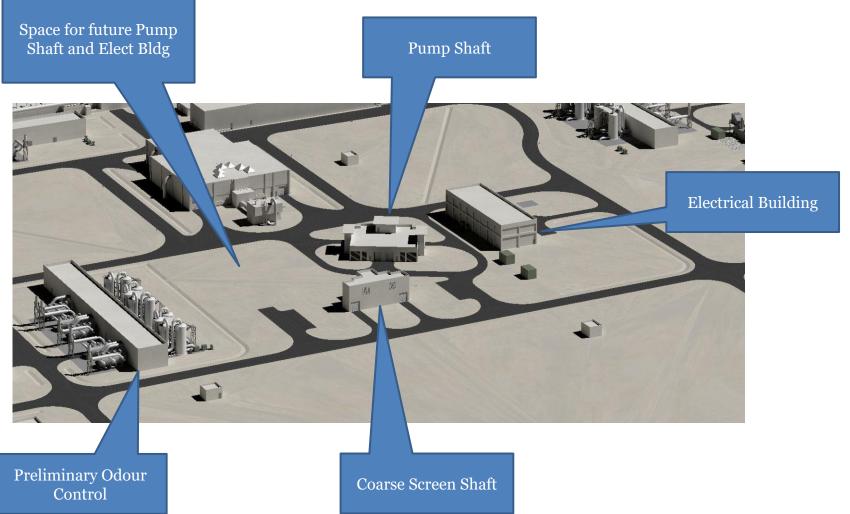
Val.Frenkel@CH2M.com (415) 412 1380

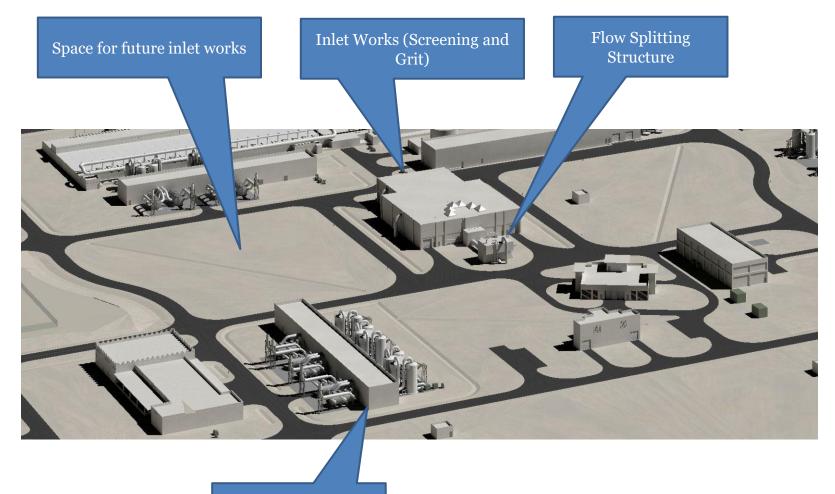

Back-Up Slides

Back-Up Slides

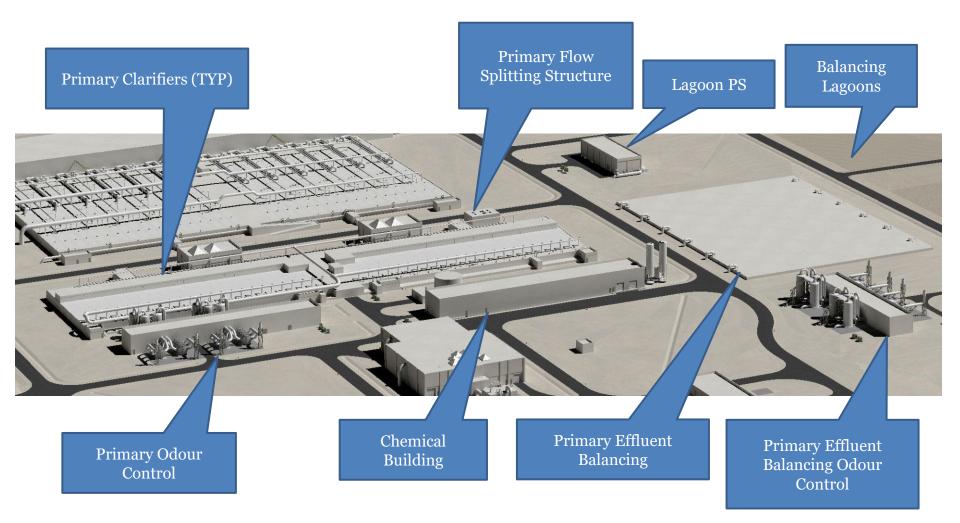

Treatment process diagram – liquid stream


Treatment process diagram – solids stream

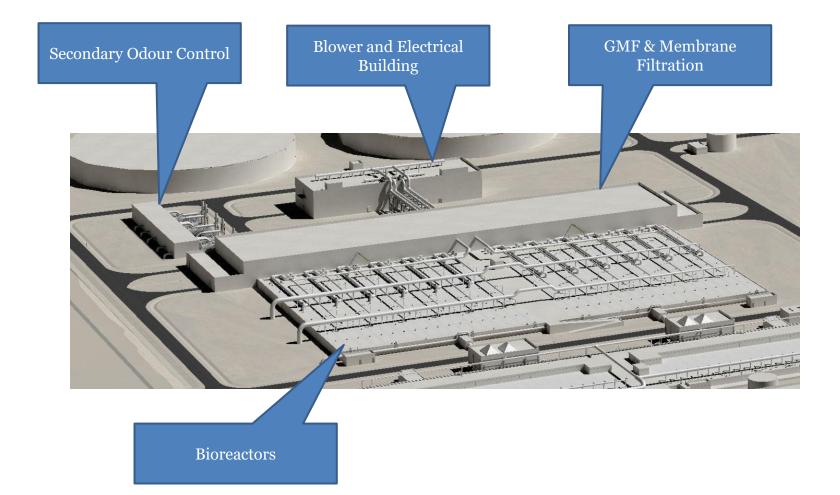

TSE storage and distribution - Water Reuse


Overview of New Doha South STW preliminary design

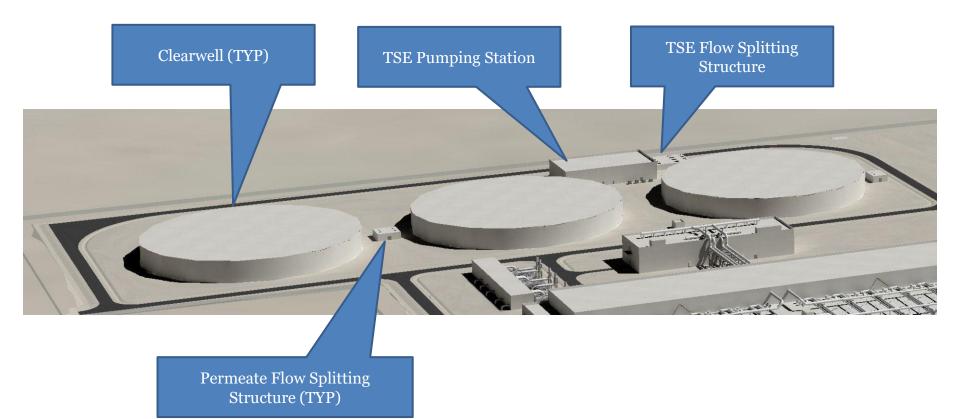
Terminal Pumping Station - TPS

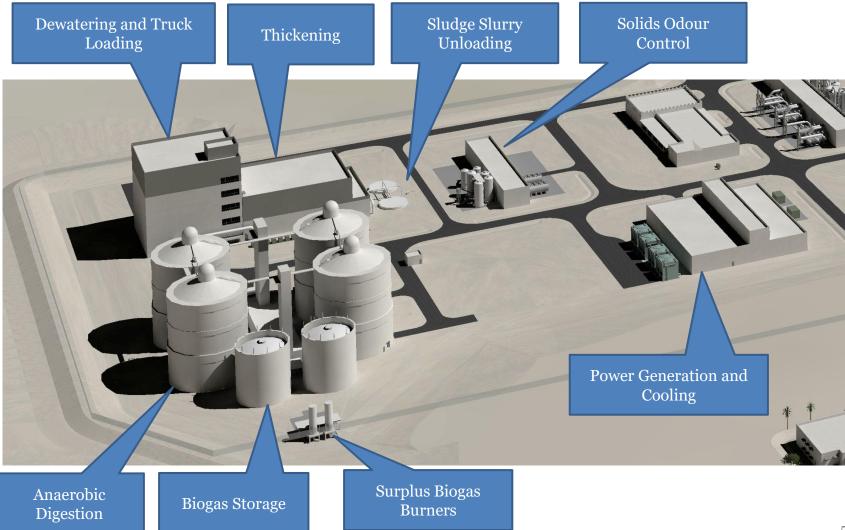


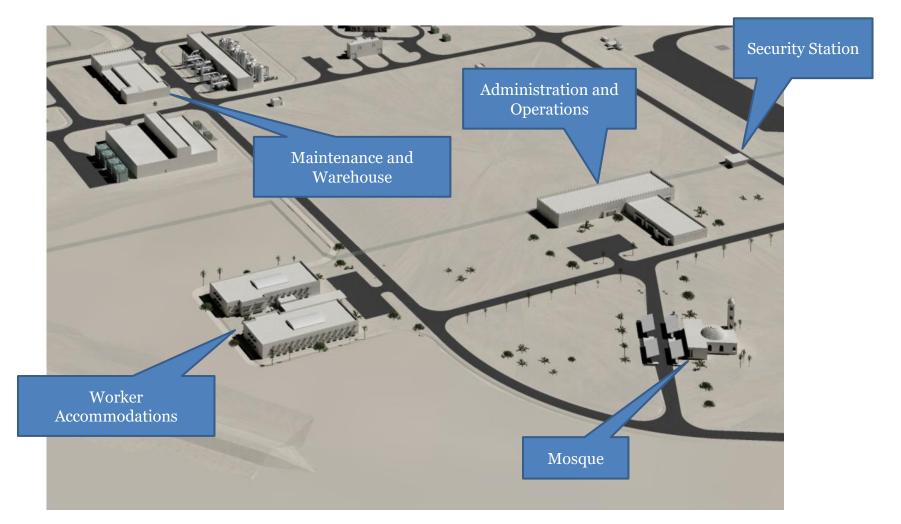
Headworks

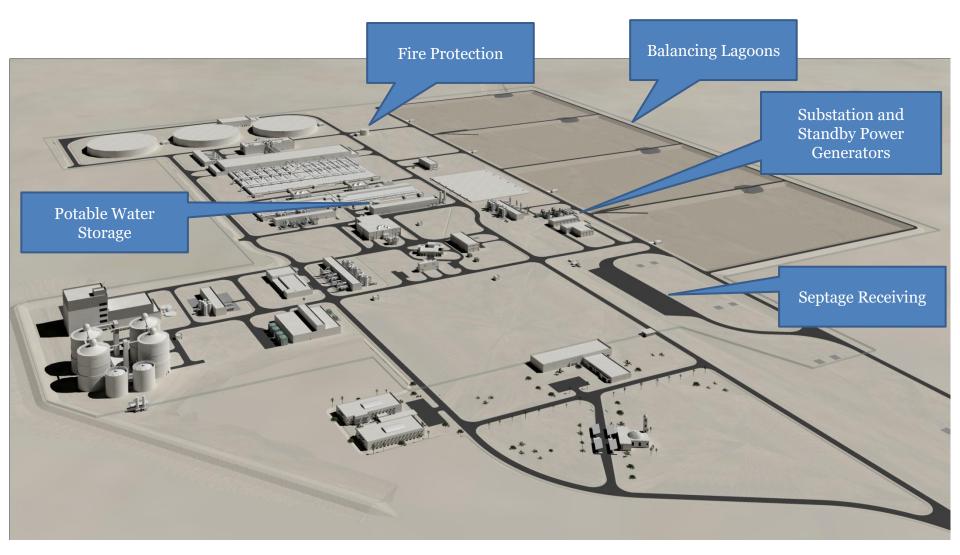


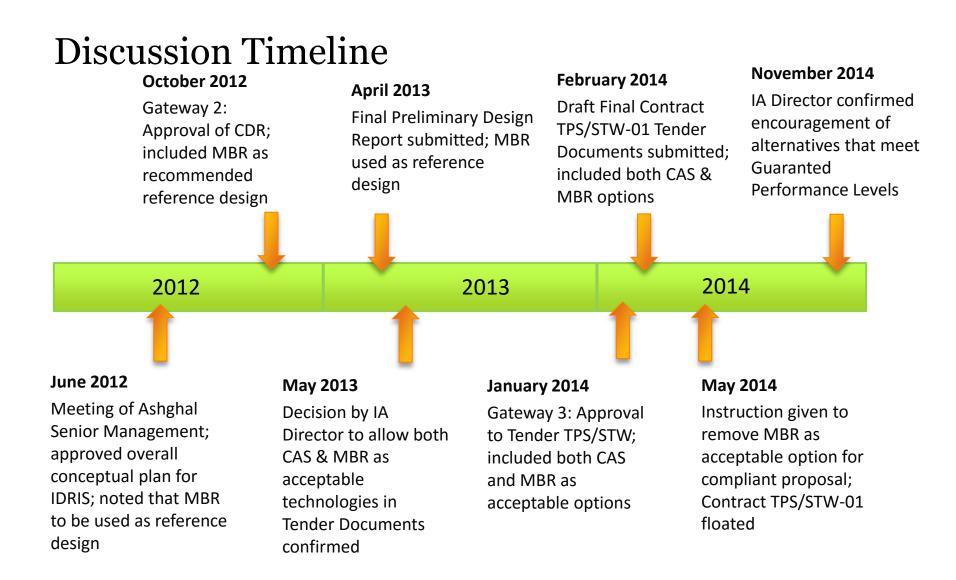
Preliminary Odour Control


Primary Treatment


Secondary and Tertiary Treatment


Disinfection and TSE Storage and Pumping – Water Reuse


Sludge Treatment



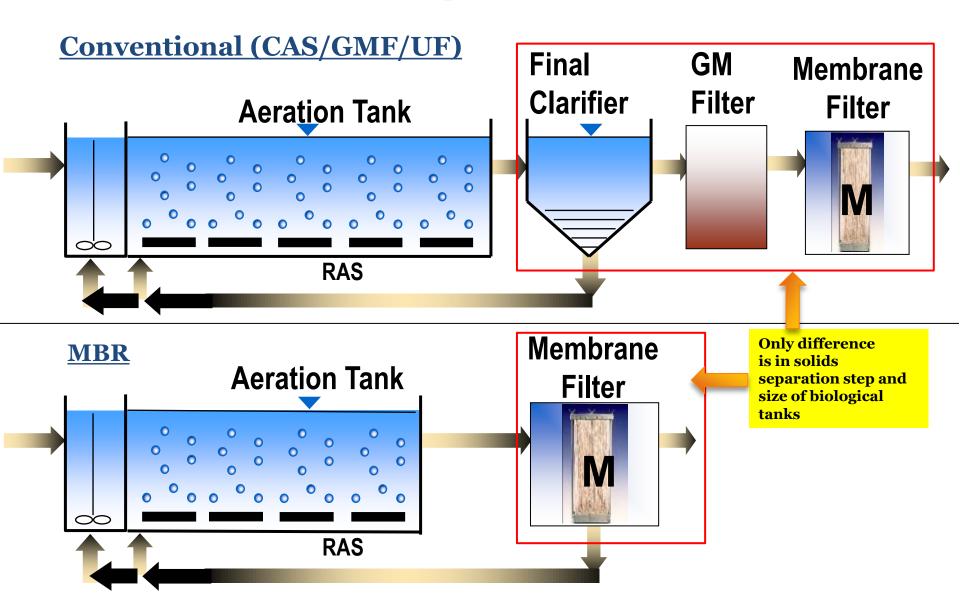
Non-process Buildings

Other Facilities

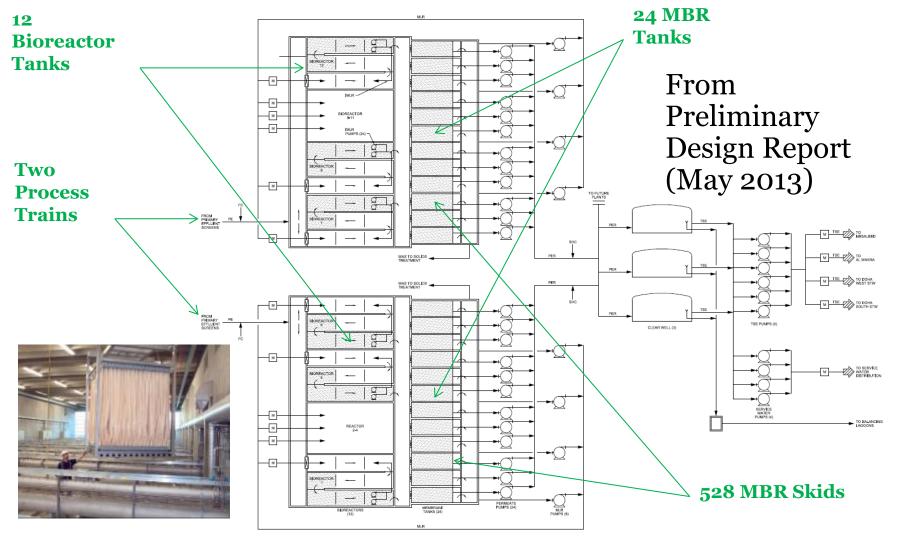
Viable Tender Alternative - MBR

Key Features

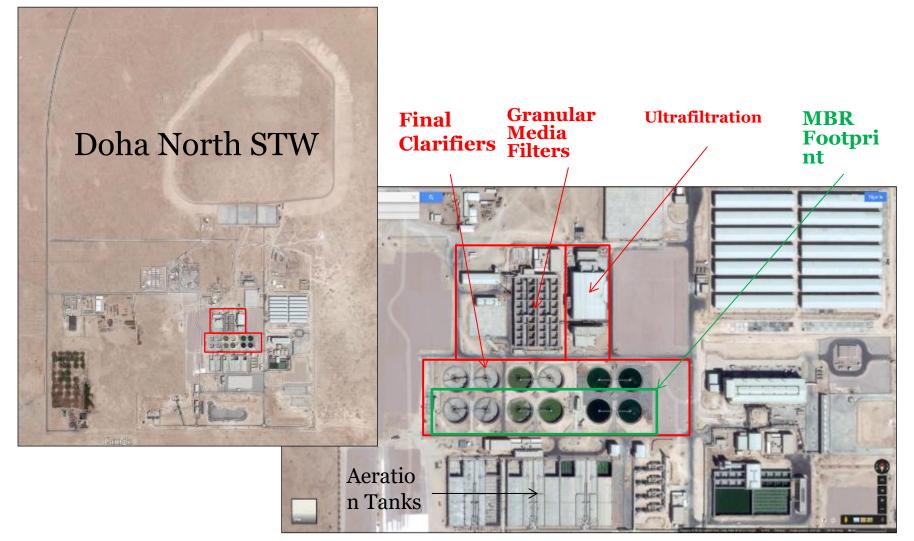
- Proven, modern technology, continuously improving
- Multi-barrier treatment, including ultrafiltration and two-stage disinfection
- Very high water quality, suitable for unrestricted re-use
- Meets the highest international standards for recycled water
- Significantly smaller footprint
- Lower CAPEX, similar OPEX
- Reduced time to construct
- Highly resilient: 2 treatment trains, 12 bioreactors, 24 MBR tanks, 528 MBR skids


The Largest MBR Plants Worldwide Updated: March 2015

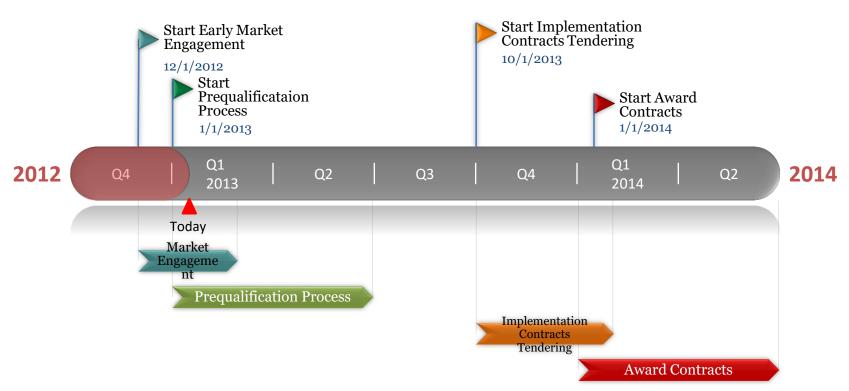
Installations	Location	Technology Provider	(Expected) date of commissioning	PDF (MLD)	ADF (MLD)
Henriksdal, Sweden	nr Stockholm, Sweden	GEWPT	2016-2019	864	536
Seine Aval	Acheres, France	GEWPT	2016	357	224
Canton WWTP	Ohio, USA	Ovivo USA/Kubota	2015-2017	333	159
Euclid, OH, USA	Ohio, USA	GEWPT	2018	250	83
Shunyi	Beijing, China	GEWPT	2016	234	180
Macau	Macau Special Administrative Region, China	GEWPT	2017	210	210
Wuhan Sanjintang WWTP	Hubei Province, China	OW	2015	200	
Jilin WWTP (Phase 1, upgrade)	Jilin Province, China	OW	2015	200	
Brussels Sud	Brussels, Belgium	GEWPT	2017	190	86
Macau	China	GEWPT	2014	189	137
Riverside	California, USA	GEWPT	2014	186	124
Brightwater	Washington, USA	GEWPT	2011	175	122
Visalia	California, USA	GEWPT	2014	171	85
Qinghe WRP (Phase 2)	Beijing, China	OW	2011	150	
Kunming 10th WWTP	Yunnan Province, China	OW	2013	150	
Nanjing East WWTP (Phase 3)	Jiangsu Province, China	OW	2014	150	
Yantai TaoziWan WWTP	Shandong Province, China	OW	2014	150	
Jilin WWPT (Phase 2)	Jilin Province, China	OW	2014	150	
Qinghe	China	OW/MRC	2011	150	150
Changsha 2nd WWTP	Hunan Province, China	OW	2014	140	
North Las Vegas	Nevada, USA	GEWPT	2011	136	97
Ballenger McKinney ENR WWTP	Maryland, USA	GEWPT	2013	135	58
Assago	Milan, Italy	GEWPT	2016	125	55
Daxing Huangcun WRP	Beijing, China	OW	2012	120	
Jinyang WWTP (Phase 1)	Shanxi Province, China	OW	2015	120	
Cox Creek WRF	Maryland, USA	GEWPT	2015	116	58
Yellow River	Georgia, USA	GEWPT	2011	114	71
Shiyan Shendinghe	China	OW/MRC	2009	110	110
Aquaviva	Cannes, France	GEWPT	2013	108	60
Urumqi Ganquanpu WRP	Xinjiang Uygur Autonomous Region, China	OW	2014	105	
Busan City	Korea	GEWPT	2012	102	102
Wenyuhe River Water Treatment (Phase 2)	Beijing, China	OW-MRC	2010	100	
Kunming 9th WWTP	Yunnan Province, China	OW	2013	100	
Hebei Zhengdi WWTP	Hubei Province, China	OW	2014	100	
ZhuHai Qianshan WWTP	Guangdong Province, China	OW	2016	100	
Guangzhou	China	Memstar	2010	100	
Guangznou					

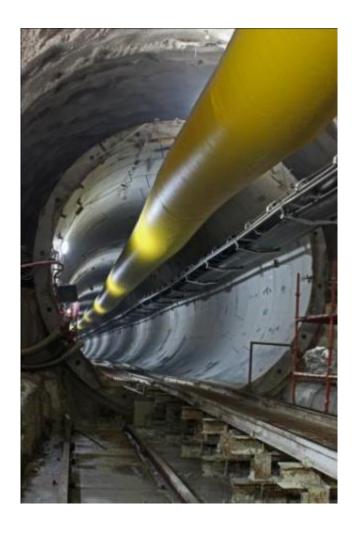

Representative MBR Installations

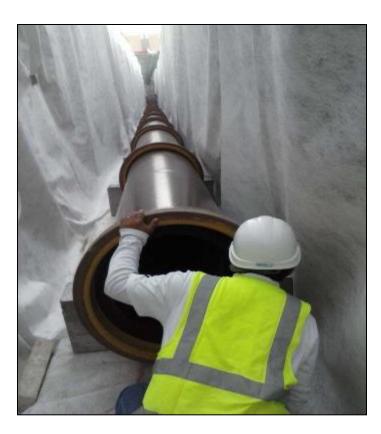
Location/Facility	Average Flow (MLD)	Status/Comments
Singapore – Tuas WRP	800 (600 domestic + 200 industrial)	Preliminary design (MBR selected for 600 MLD domestic; 200 MLD industrial yet to be determine)
Florida (USA) – Miami OOL Program	380	Planning
Singapore – Changi WRP	320	120 MLD currently being retrofit into existing WRP; design of new 200 MLD expansion
Acheres, France – Seine Aval	224	Commissioning in 2016
Ohio USA – Canton WWTP	159	Commissioning in 2017
China - Qinghe	150	Commissioned 2011
China - Macau	137	Commissioning in 2014
California USA - Riverside	124	Commissioning in 2014
Washington USA - Brightwater	122	Commissioned 2011
China – Shiyan Shendinghe	110	Commissioned 2010
Korea – Busan City	102	Commissioned 2012
China – Wenyuhe (Beijing)	100	Commissioned 2007
5®Nevada USA – North Las Vegas	97	Commissioned 2011


Process Comparison – CAS vs. MBR

Tender Alternative Layout (cont.)




Comparison at Doha North STW


Overall Procurement Schedule

- Early market engagement activities – December 2013-February 2013
- Pre-qualification 1st & 2nd quarters of 2013
- Start implementation contracts tendering – 4th quarter 2013
- Award first contracts 1st quarter 2014

